The (Elusive) Fossil Record of Black Hole Seeds

with Space Telescope Imaging Spectrographs

Jonathan Trump

(UConn)

w/ Joanna Bridge, Mouyuan Sun, Guillermo Barro, Niel Brandt, Sandy Faber, Steph Juneau, David Koo, Dale Kocevski, Bret Lehmer, Iva Momcheva, Ben Weiner, Kate Whitaker, Greg Zeimann

Birth and Growth of Black Holes

- 1. Black Holes and Galaxies: Background
- 2. The Census of Low-Mass AGNs
- 3. Coming of Age with Imaging Spectroscopy
- 4. Imaging Spectroscopy: The Next Generation

Birth and Growth of Black Holes

1. Black Holes and Galaxies: Background

- 2. The Census of Low-Mass AGNs
- 3. Coming of Age with Imaging Spectroscopy
- 4. Imaging Spectroscopy: The Next Generation

BH - Galaxy Coupling

BH mass is ~0.2% Galaxy (bulge) mass

Coevolution over 2-3 magnitudes of mass

Best correlation for BH and galaxy bulge (old star component)

Only mature galaxies host SMBHs?

BH - Galaxy: Distant Universe

- No evolution in $M_{BH}/M \star$ with redshift
- BH first couples to total galaxy mass, bulge grows later?
- see also Jahnke+09, Cisternas+11 (COSMOS)

BH - galaxy coupling in place by teenage universe (z~2)

BH - Galaxy Flow Pattern

Herschel FIR -> galaxy SFR Chandra X-ray -> BH growth Outliers return to mean: "self-

to mean: "selfmaintained"

Duty cycle for rapid accretion onto BH: ~10%

BH - Galaxy Flow Pattern

Measuring BH Mass: SDSS-RM

The next generation of reliable BH masses: Multi-Object Reverberation Mapping

~50 RM masses from SDSS-RM, at z<1.

(Full expected yield: ~200 masses at z<3.)

Coming soon: LSST! photometric RM for >10⁶ QSOs...

BH - Galaxy Flow Pattern

Mix of under- / overmassive BHs in few galaxies with dynamical M_{BH}

Birth and Growth of Black Holes

1. Black Holes and Galaxies: Background

2. The Census of Low-Mass AGNs

- 3. Coming of Age with Imaging Spectroscopy
- 4. Imaging Spectroscopy: The Next Generation

Finding Accreting Black Holes

Optical spectroscopy: hard ionization signature

- massive wide-field surveys: ~10³-10⁵ galaxies
- (mostly) insensitive to dust reddening
- also gives redshift, black hole mass*
- inexpensive observations from the ground

(Accreting) BH Detection

Galaxies w/ Growing BHs: Apparent

BPT AGN

- 320,000 SDSS galaxies (S/N_{line}>3), 0.01<z<0.1
- AGNs selected by BPT line ratios
- Preference for highmass green valley? (Kauffmann+03)
- Very few massive seeds in low-mass galaxies?

BH Detection: Galaxy (SF) Contrast

BH Detection: Galaxy (SF) Contrast

BH Detection: Galaxy (SF) Contrast

Strong bias against BH detection at low mass: SF dilutes observed line ratios (also Moran+02)

Correct for BH Selection Bias

BH Seed Fossils: z~0 (SDSS)

320,000 SDSS galaxies with S/N_{BPT}>3, 0.01<z<0.1

Monte Carlo simulations, adding AGN to SF galaxies in each bin

Assumptions:

- power-law Edd ratio
- M_{BH} ~ $\sigma^{4.2}$
- $L_{bol} = 112L_{[OIII]}^{1.2}$
- "pure AGN" line ratios
- uniform dust
- avg AGN-SF correlation

"BH occupation": deviation from MBH-Mbulge relation (HR04)

BH occupation from 320,000 SDSS galaxies.

BH Seed Fossil Record, in X-ray

- See also Miller+15: low-mass AGN census from AMUSE X-ray survey
- Consistent occupation fraction, with fewer assumptions / weaker constraints

BH Seed Fossils: z~0 (SDSS)

Lower BH occupation in low-mass galaxies

Bimodal BH seeding: direct-collapse SMBHs rare in low-mass halos

But:

- indirect record at z~0
- low mass unconstrained
- uncertain assumptions...
 - power-law Edd ratio
 - M_{BH} ~ $\sigma^{4.2}$
 - $L_{bol} = 112L_{[OIII]}^{1.2}$
 - "pure AGN" line ratios
 - uniform dust
 - avg AGN-SF correlation

Birth and Growth of Black Holes

- 1. Black Holes and Galaxies: Background
- 2. The Census of Low-Mass AGNs
- 3. Coming of Age with Imaging Spectroscopy
- 4. Imaging Spectroscopy: The Next Generation

HST Imaging Spectroscopy

Wide Field Camera 3

- Installed in 2009 (Service Mission 4)
- IR slitless grisms: G102 (0.8-1.15 μm) & G141 (1.1-1.7 μm)
- HST spatial resolution (0.06"/pix)!

HST Imaging Spectroscopy

CANDELS + 3D-HST:

- 150 tiles (2'×2') of G141 spectroscopy (1.1-1.7 μm)
- High spatial res (0.06"/pix), low spectral res (R~200)
- 50 useable galaxies / tile (with Hβ+[OIII], 1.3<z<2.4)

Spatially Resolved BH Detection

Compare *nuclear* and *extended* emission-line ratios

High *nuclear* ionization -> AGN

Simulated BH+Galaxy, HST spectra

Simulate accreting BH + galaxy, characterize BH growth:

 $\log(\lambda_{\rm Edd}) = (-2.969 \pm 0.138) - (0.335 \pm 0.054)[\log(M_*) - 9]$

 $+ (0.289 \pm 0.056)[\log(\mathrm{sSFR}) + 10] + (5.367 \pm 0.426)\Delta\log(\mathrm{[O~III]/H}\beta)$

Spatially Resolved BH Detection

Much higher sensitivity than integrated BPT at low mass (Simulation of 2-orbit HST/WFC3 grism data, exploring a wide range of AGN strength and galaxy properties)

Spatially Resolved BH Detection

*Nuclear BH emission in M**~10⁹ *galaxies* (28 stacked HST/WFC3 G141 spectra in HUDF)

The Low-Mass AGN Census

7000 3D-HST galaxies, binned by mass and sSFR.

Spatially Resolved BH Detection: CANDELS + 3D-HST

Nuclear BH content by stacked galaxy mass and sSFR

"Collapse" lines into one spatial dimension

BH occupation from 320,000 SDSS galaxies... with many (uncertain) assumptions to correct detection bias

BH occupation from 320,000 SDSS galaxies... with many (uncertain) assumptions to correct detection bias

Spatially resolved HST spectra: superior constraints on BH seed occupation (*50x smaller sample than SDSS*)

Spatially resolved HST spectra: superior constraints on BH seed occupation (*50x smaller sample than SDSS*)

Observational evidence for massive seeding

Many massive BH seeds:

- BH before galaxy: dominates primordial galaxy formation?
- BHs as missing reionization sources at z>6?
- Primordial BH collapse/merger gravitational wave signature

Birth and Growth of Black Holes

- 1. Black Holes and Galaxies: Background
- 2. The Census of Low-Mass AGNs
- 3. Coming of Age with Imaging Spectroscopy

4. Imaging Spectroscopy: The Next Generation

Future of Imaging Spectroscopy

Flagship instruments on:

Future of Imaging Spectroscopy

Flagship instruments on:

Future of Spatially Resolved Spectroscopy Surveys

Sensitivity like Spitzer/IRAC... in spatially resolved spectroscopy!

- BH seed formation and growth
- Extended shocks / outflows
- Inside-out galaxy evolution
- First galaxies, physical conditions

BH Seed Census with JWST

 Spatially resolved detections of *individual* AGNs in 10⁸ M_{sun} hosts: direct census of seed distribution!

Future of Imaging Spectroscopy

Flagship instruments on:

Imaging Spectroscopy and Black Hole Seeds

Jonathan Trump jonathan.trump@uconn.edu UConn http://phys.uconn.edu/~jtrump