Radiative Efficiencies, BH spins, and Elusive AGN among High-Mass Quasars

Benny Trakhtenbrot

ETH Zürich

With:

Marta Volonteri (AIP), Priyamvada Natarajan (Yale)

Caroline Bertemes (ETH & Bath), Kevin Schawinski (ETH), Martin Elvis (CfA), Chris Done (Durham) | Hagai Netzer (Tel-Aviv), Dan Capellupo (McGill), Paulina Lira & Julian Mejia-Restrepo (U. Chile)

Elusive AGN in the Next Era, Fairfax, September 19 2016

- 1. The quasars we know
- 2. The quasars we don't know (yet?)

- 1. The quasars we know
- 2. The quasars we don't know (yet?)

Radiative efficiency:

Radiative efficiency: controls SMBH growth

- BH spin sets inner edge of accretion disk/flow ...
- ... which sets the radiative efficiency:

$$L_{\rm bol} = \eta \dot{M}_{\rm acc} c^2$$

In the thin-disk regime:

$$\eta \sim 0.04 - 0.4$$

"Soltan's argument":

$$\eta \sim 0.1$$

BH "growth efficiency":

$$\dot{M}_{\rm BH} = (1 - \eta) \dot{M}_{\rm acc}$$
 $t_{\rm growth} \propto \eta / (1 - \eta)$

 $t_{\rm growth} \propto \eta/(1-\eta) \quad o \quad {\sf Fast-spinning BHs grow slowly}$

BH spin evolution: "spin down" scenario

A large number of accretion events (disks), randomly oriented w.r.t. the SMBH → "spin down"

coalescence events also lead to spin-down: $a \propto M_{\rm BH}^{-2.4}$ (Hughes & Blandford 03)

BH spin evolution: the role of (an)isotropy

more isotropy → lower spins prolonged accretion / anisotropy → "spin up"

Census of (local) SMBH spin measurements

Gravitationally broadened Iron $K\alpha$ line at ${\sim}6.7~{\rm keV}$ Spin estimates for ${\sim}20$ local, low-luminosity and low- $M_{\rm BH}$ AGN

No non-spinning SMBHs?

Brenneman & Reynolds 06, Brenneman+11, Gallo+11, Patrick+12, Fabian+13, Walton+13 ...

Where are the most massive active BHs?

Constraints on radiative efficiencies of high-z quasars

$$L_{\rm bol} = \eta \dot{M}_{\rm disk} c^2$$

Trakhtenbrot 14,
Trakhtenbrot, Volonteri & Natarajan 17
method described in Davis & Laor 10, Wu+13

Basic assumptions

- 1. Luminous AGNs accrete matter through geometrically thin, "Shakura-Sunyaev-like" accretion disks
- 2. $M_{\rm BH}$ can be reliably estimated from broad emission lines for example:

$$M_{\rm BH}({\rm H}\beta) = 1.05 \times 10^8 \left(\frac{L_{5100}}{10^{46}\,{\rm erg\,s^{-1}}}\right)^{0.65} \left[\frac{{\rm FWHM}({\rm H}\beta)}{10^3\,{\rm km\,s^{-1}}}\right]^2 {\rm M}_{\odot}.$$

Thin accretion disks: estimating accretion rates

$$\dot{M}_{\rm disk} \simeq 2.4 \left(\frac{\lambda L_{\lambda}}{10^{45} \cos i}\right)^{3/2} \left(\frac{\lambda_{\rm cont}}{5100 \text{Å}}\right)^2 \left(\frac{M_{\rm BH}}{10^8 M_{\odot}}\right) M_{\odot}/{\rm yr}$$

Bechtold+87, Collin+06

Davis & Laor 11

Estimating bolometric luminosities

Reference	ζ 1450	ζ 3000	ζ 5100	Number of sources	Range in $log(L_{bol})$	Standard error in mean for 1450/3000/5100 Å
Elvis et al. (1994) ^a	5.12	6.19	12.45	47	44.86-46.92	_
Recalculated Elvis et al. (1994) ^b	3.15	3.82	7.68	-	_	_
Richards et al. (2006)	_	5.62	10.33	259	45.06-47.43	/0.07/0.13
Recalculated Richards et al. (2006) ^c	2.33	3.11	5.53	-	_	_
Nemmen & Brotherton (2010) ^d	3.0	5.9	7.6	280	44.60-48.50	0.3/0.8/1.9
This work	4.2	5.2	8.1	63	45.13-47.30	0.1/0.2/0.4

Elvis+94, Marconi+04, Richards+06, Jin+12, Runnoe+12

Sample & data: the most massive BHs at $z\sim2-7$

• 72 quasars at *z*~1.5–3.5

Shemmer+2004, Netzer+2007, Marziani+2009, Dietrich+2009

20 quasars at z~5.8–7

Iwamuro+2004, Kurk+2007,2009, Jiang+2007, Willott+2010, De Rosa+2011

- Near-IR spectra to cover $(H\beta, L_{5100})$ or $(MgII, L_{3000})$
- 2MASS, Spitzer and/or WISE data covers (rest-frame) optical cont. (Jiang+2006, 2010, Leipski+2014)
 - $\rightarrow M_{\rm BH}$ and $\dot{M}_{\rm disk}$

• Most sources have $M_{\rm BH} > 3 \times 10^9 M_{\odot}$

Most massive BHs, $z\sim1.5$ -3.5: lower limits on η

Highest $\dot{M}_{\rm disk}$ and lowest $L_{\rm bol}$ (= $3 \times L_{5100}$)

the most massive BHs have high radiative efficiencies

... and high spins
low growth efficiencies

Highest-z quasars, $z\sim6$ -7: lower limits on η

Highest $\dot{M}_{\rm disk}$ and lowest $L_{\rm bol}$ (= 3× $L_{\rm 5100}$)

the highest-redshift quasars are consistent with Eddington-limited, radiatively efficient, thin-disk accretion

Trakhtenbrot, Volonteri & Natarajan 17

Additional evidence for high spins at high $M_{\rm BH}$

• Recent $K\alpha$ results at $z\sim1-2$ (e.g., Reis+14, Reynolds+14)

- UV-Optical SED fitting for z~1.5 AGN with known BH mass (Capellupo+15, 16)
- Requirement for significant ionizing radiation (for lines)
 - \rightarrow About 75% of massive $z\sim0.7$ SDSS quasars have $a_*>0.7$ (Netzer & Trakhtenbrot 14)

Summary – 1. the quasars we know

- 1. Radiative efficiencies and BH spins are important for understanding SMBH growth
- 2. The most massive BHs, at $z\sim1.5-3.5$ have high spins Their luminosities require high η , given the virial masses
- 3. The highest-z quasars, at z~6, can be explained self-consistently with thin-disk, sub-Eddington accretion if one assumes a thin-disk optical SED, most have $\eta > 0.04$

... but what about "elusive" AGN?

We are missing faint AGN at $z\sim5-7$

are the missing AGN obscured? radiatively inefficient?

Most massive BHs, $z\sim1.5$ -3.5: lower limits on η

Highest $\dot{M}_{\rm disk}$ and lowest $L_{\rm bol}$ (= $3 \times L_{5100}$)

the most massive BHs have high radiative efficiencies

... and high spins
low growth efficiencies

In thin disk models, UV radiation decreases for high-mass and/or low spin SMBHs:

1. UV-optical SED becomes "red"

Laor & Davis 11

testing SDSS color-color selection for thin-disk models

Bertemes, BT +16

a grid of thin disk models: ~400,000 SEDs

Parameter	Min. value	Max. value	Step size
BH mass, $\log (M_{\rm BH}/{\rm M}_{\odot})$	6	11	0.5
BH spin, a_*	-1	0.998	0.1
Accretion rate, $L/L_{\rm Edd}$	0.05	1	0.05
Redshift, z	0.5	2	0.1
Inclination, inc	10°	50°	10°

testing SDSS color-color selection for thin-disk models

SDSS color-color selection misses high-mass, low spin BHs

In thin disk models, UV radiation decreases for high-mass and/or low spin SMBHs:

- UV-optical SED becomes "red"
- 2. Insufficient ionizing radiation for emission lines

Laor & Davis 11

modeling broad-line emission with thin-disk SEDs & CLOUDY

high-mass, low-spin BHs would have weak high-ion. lines

an example for a cold accretion disk in the SDSS

Hryniewicz+11, Laor & Davis 11 (more WLQs in Shemmer+10, Plotkin+15)

In thin disk models, UV radiation decreases for high-mass and/or low spin SMBHs:

- UV-optical SED becomes "red"
- 2. Insufficient ionizing radiation for emission lines
- 3. Disk outflows and/or super-Eddington accretion can make it worse
- 4. No UV \rightarrow no X-rays? No (M)IR?

Laor & Davis 11

Conclusions

- Radiative efficiencies and/or BH spins are important for understanding SMBH growth
- 2. The most massive BHs, at $z\sim1.5-3.5$ have high spins Their luminosities require high η , given the virial masses
- 3. The highest-z quasars, at z~6, can be explained self-consistently with thin-disk, sub-Eddington accretion if one assumes a thin-disk optical SED, most have $\eta > 0.04$
- 4. We might be missing the high-mass, non-spinning, retro-grade spinning, and/or radiatively inefficient SMBHs
- 5. "UV-poor AGN" might be elusive in emission lines, X-rays & IR Thank you!

Conclusions

- Radiative efficiencies and/or BH spins are important for understanding SMBH growth
- 2. The most massive BHs, at $z\sim1.5-3.5$ have high spins Their luminosities require high η , given the virial masses
- 3. The highest-z quasars, at z~6, can be explained self-consistently with thin-disk, sub-Eddington accretion if one assumes a thin-disk optical SED, most have $\eta > 0.04$
- 4. We might be missing the high-mass, non-spinning, retro-grade spinning, and/or radiatively inefficient SMBHs
- 5. "UV-poor AGN" might be elusive in emission lines, X-rays & IR Thank you!

testing SDSS color-color selection for thin-disk models

SDSS color-color selection misses high-mass, low spin BHs

We are missing faint AGN at $z\sim5-7$

$L/L_{\rm Edd}$ Evolution in Luminous, Unobscured AGN

 $M_{\rm BH} = 4 \times 10^7$ 4×10⁸ 1.5×10⁹

Trakhtenbrot & Netzer (2012)

Netzer+2007, Kurk+2007, Willott+2010, Trakhtenbrot+2011, Trakhtenbrot+2016

BH spin evolution: expectations for extremely massive BHs

Spin-up (Dotti et al. 2013)

spin-down (King et al. 2008)

The most massive SMBHs $(M_{\rm BH}>10^9 M_{\odot})$ experience more accretion episodes \rightarrow largest difference in spins

BH spin evolution: expectations for extremely massive BHs

Embedding accretion prescriptions in SAMs provide evolutionary tracks and distributions of BH spin

Volonteri et al. (2013)

Fanidakis et al. (2011)

BH spin estimates: the Kα method

Gravitationally broadened Iron $K\alpha$ line at \sim 6.7 keV, reflected from the accretion disk,

BH spin estimates: the $K\alpha$ method at high z?

Reis et al. (2014, *Nature*) - z = 0.658, $M_{\rm BH} \approx 10^8 M_{\odot}$, $a_* = 0.87$

Reynolds et al. (2014) - z = 1.695, $M_{\rm BH} = 3 \times 10^9 M_{\odot}$, $a_* = 0.74$

BH spin estimates: the Kα method

Spin estimates for ~20 local, low-luminosity and low- $M_{\rm BH}$ AGNs No non-spinning SMBHs (publication bias?)

BH spin estimates: a different approach

Luminous AGNs at z~1.5 accrete matter through geometrically thin, Shakura-Sunyaev-like accretion disks

BH spin estimates: a different approach

~45 Luminous AGNs at z~1.5 with X-Shooter - fit SEDs of geometrically thin, Shakura-Sunyaev-*like* accretion disks

Capellupo et al. (2014,2016)

BH spin estimates: a different approach

Basic assumptions

2. $M_{\rm BH}$ can be reliably estimated from broad emission lines at z>0, we use empirical calibrations, based on reverberation mapping

$$M_{\rm BH} = 1.05 \times 10^8 \left(\frac{\lambda L_{\lambda} [5100\text{Å}]}{10^{46} \text{ km/s}} \right)^{0.65} \left(\frac{\text{FWHM[H}\beta]}{1000 \text{ km/s}} \right)^2 M_{\rm e}$$

Kaspi et al. (2005)

Woo et al. (2013)

Thin accretion disks: spectral energy distributions

Original theory by Shakura & Sunyaev (1973)...

Basic ingredients:

$$M_{\mathrm{BH}}$$
, M_{AD} and spin

 "multi-color" shape with a low-frequency tail, due to outer (colder) region:

$$L_{
m v} \propto \left(M_{
m AD}^2 \cdot M_{
m BH}\right)^{2/3} \, \, v^{1/3}$$

 More elaborate models, with comptonization, GR etc ...

Hubney et al. (2000), Davis & Laor (2011)

Results: BH spin distributions

- Red lines: most conservative (lowest L_{Bol} and highest M_{AD})
- Dashed lines: $M_{\rm BH} > 3 \times 10^9 M_{\odot}$
- \rightarrow 2/3 of BHs have a>0.5, 2/3 of BHs with $>10^{10} M_{\odot}$ have a>0.8

Results, $z\sim6-7$: accretion time-scales

"standard": $L/L_{\rm Edd}$ and $\eta=0.1$ vs. "new": $M_{\rm AD}$ and $L_{\rm Bol}$

the highest-redshift quasars are consistent with efficient, thin accretion disks; time for ~1-10 mass e-folds

Trakhtenbrot, Volonteri & Natarajan (in prep.)

Additional evidence for high spins at high $M_{\rm BH}$: Direct evidence for M87

One of the most massive BHs in the local Universe

$$M_{\rm BH} = 6.2 \times 10^9 \, M_{\odot}$$

(Gebhardt et al. 2011)

- New sub-mm VLBI data resolved the jet-launching site (Doelman et al. 2012, Science)
- Direct measurement of ISCO

$$R_{\rm ISCO} = 5.5 + -0.4 R_{\rm Sch}$$

 $\Rightarrow a_* \approx 0.5 - 0.8$

