Detecting Elusive Black Holes in the JWST Era Fabio Pacucci Yale University

> In collaboration with: Nico Cappelluti Andrea Ferrara Priyamvada Natarajan Angelo Ricarte Meg Urry Marta Volonteri and others...

Elusive AGN in the Next Era George Mason University, Fairfax (VA), 12 June 2017

Outline

INTRODUCTION: THE FIRST BLACK HOLES

THE CODE: GEMS (Growth of Early Massive Seeds)

THE SPECTRUM OF THE FIRST BLACK HOLES

THE DETECTION OF THE FIRST BLACK HOLES

INTRODUCTION

The Billion (Dollars) Problem

Observations of $10^9 M_{\odot}$ SMBHs < 1 Gyr after the Big Bang How did they grow up so rapidly?

INTRODUCTION

Making a Massive Seed

Main proposed mechanisms:

Making a DCBH <u>Host halo & environment:</u>

- Metal-free gas
- Atomic-cooling halo
- Strong Lyman-Werner
 (11.2 eV 13.6 eV) flux
- Large inflow rates

INTRODUCTION

Key Questions

THE SPECTRUM OF THE FIRST BLACK HOLES

- What are the emission characteristics of DCBHs?
- Dependence of the DCBH emission on accretion physics.
- How is the spectrum emerging from highly-obscured galaxies?

THE DETECTION OF THE FIRST BLACK HOLES

- Are they observable by current and/or future observatories?
- Survey strategies to find them: the role of HST and JWST

<u>Our Approach:</u> <u>Analytical + Numerical</u>

CODE

How to Study DCBHs?

Physical Framework: $T_{\rm vir} \sim 10^4 \, {\rm K}$ $R \sim R_B$ $M_{\bullet}(t_0)$

We do not model the seed formation

Numerical Framework:

GEMS code (Growth of Early Massive Seeds):

- Spherical symmetry
- Solves Euler's equations
- Solves Radiation Transfer
- Cooling terms: atomic
- Opacity terms: Thomson (main) and electronic transitions

(Pacucci & Ferrara, 2014)

Computing the Spectrum

CODE

Detecting DCBHs with JWST

Detecting DCBHs with JWST

Detecting DCBHs with JWST

Elusive Black Holes

The JWST will be the key observatory to unravel the obscured population of black holes

Status of Black Hole Seeds Searches

DCBH candidate at z = 6.06

SURVEYS

Photometric selection and background fluctuations (IR/X) Two DCBH candidates in GOODS-S at z>6 (Pacucci et al., 2016)

5 kpc

DCBH

CR7

YJ Lya H

SINGLE SOURCES

Pop III stars The case of CR7 (LAE at z=6.6) (e.g. Sobral et al., 2015):

- No metal lines
- Strong Lya and He II lines
 (but see Shibuya et al., 2017)

Photometric Searches of the First Black Holes

CANDELS GOODS Field

Photometry of DCBHs

X-ray Detected Objects in GOODS-S

DCBH Candidates in GOODS-S

DCBI9 earle fat z = 6.0 (Pacucci et al., 2016)

Status of Black Hole Seeds Searches

DCBH candidate at z = 6.06

SURVEYS

Photometric selection and background fluctuations (IR/X) Two DCBH candidates in GOODS-S at z>6 (Pacucci et al., 2016)

5 kpc

DCBH

CR7

YJ Lya H

SINGLE SOURCES

Pop III stars The case of CR7 (LAE at z=6.6) (e.g. Sobral et al., 2015):

- No metal lines
- Strong Lya and He II lines (but see Shibuya et al., 2017)

The Nature of CR7: a Persisting Puzzle

The photometry of CR7 can be fitted by our DCBH model.

Zero metallicity model

The Nature of CR7: a Persisting Puzzle

The photometry of CR7 can be fitted by our DCBH model.

Low metallicity model (see also Agarwal et al., 2017)

CR7: a Variability Study with HST

Space Telescope Live @spacetelelive · Mar 14 I am looking at the galaxy CR7 for Prof. Xiaohui Fan using Wide Field Camera 3! bit.ly/2nz2NR0

UV variability would favor the black hole interpretation.

Cycle 24 HST observation PI: Xiaohui Fan

Predictions

- Predicted variability of CR7: 0.15-0.2 mag in rest-frame UV
- Short (one month) and long (one year) term rest-frame variability

Observations

- Deep F110W and F160W exposures of CR7
- Observations separated by 300 days (40 days rest-frame)

HST/JWST Synergy

Conclusions

OBSERVABILITY OF THE FIRST BLACK HOLES

- DCBHs emit in infrared and X-ray
- Elusive black holes only observable in the infrared
- Two DCBH candidates detected in a GOODS-S (HST + Chandra)
- Photometry of CR7 compatible with a DCBH model
- DCBH selection criteria for JWST have been developed
- JWST: principal observatory to search for the first black holes

FUTURE PROSPECTS

- Study of the variability of CR7 with HST
- Search for more DCBH candidates in e.g. Stripe 82, GOODS-N
- High-resolution spectra of the first black holes with JWST
- Strong synergy between HST and JWST in this search

BACKUP SLIDES

These sources are extremely red!

Pop III seed vs. DCBH seed

(Natarajan et al., 2016)

Take-Away Points

SPECTRUM:

- Typical DCBHs detectable by the JWST
- Highly-obscured DCBHs: weaker constraints on high-z mass density
- Highly-obscured DCBHs: possibly undetectable in the X-rays but visible in the optical/infrared

DETECTING DCBHs:

Detecting Direct Collapse Black Holes

CR7: Black Hole or Early Stars?

(Sobral et al., 2015)

DCBH

CR7: the DCBH Hypothesis

Main features of CR7 (Sobral et al., 2015):

- z=6.6
- No metal lines
- Strong Lya and He II lines
- Strong Lyman-Werner flux

The Quest for Black Hole Seeds

CANDELS GOODS Field

High-z GOODS-S Objects

The First DCBH Candidates

Credit: X-ray: NASA/CXC/Scuola Normale Superiore/Pacucci, F. et al, Optical: NASA/STScI; Illustration: NASA/CXC/M.Weiss

Massive Black Holes Family Portrait

Black Holes and Reionization

Reionization is complete by $z \sim 6$

Black Holes and Galaxy Formation

The Growth of the First Black Holes

(Pacucci & Ferrara, 2014; Pacucci, Volonteri & Ferrara, 2015)

Structure of the Accretion Flow

(Pacucci, Volonteri & Ferrara, 2015)

Bimodal Evolution of the Black Hole Seeds

(Pacucci, Volonteri & Ferrara, 2015)

Take-Away Points

GROWTH:

- Standard accretion: intermittent, most of gas lost in outflows
- Slim-disk accretion: super-Eddington, continuous, most of gas accreted, short timescales
- Growth is more rapid for larger black hole masses

DETECTING DCBHs:

The Effect of DCBHs on Reionization

Growing DCBH seeds negligibly contribute to reionization

Growth Rapidity and Black Hole Mass

<u>Growth is faster</u> <u>for larger</u> <u>black hole masses</u>

> **Pacucci et al., 2014; Pacucci et al., 2015;** Inayoshi et al., 2015; Park et al., 2015

Faint AGN candidates in GOODS-S

Pre-selection criterium: mag H < 27

(corresponding to selecting sources on the basis of their detected rest-frame UV luminosity)

ID	RA	Dec	zphot	zspec	С	Н	M_{1450}	$\log F_X$	$\log L_X$	А	Previous Catalogs
								$erg/cm^2/s$	erg/s		
273	53.1220463	-27.9387409	4.49	4.762^{1}	с	23.96	-21.37	-15.97	43.80	#2	M208,X403
4285	53.1664941	-27.8716803	4.28		\mathbf{cf}	25.57	-20.22	-16.46	42.90	#3	_
4356	53.1465968	-27.8709872	4.70		\mathbf{cf}	26.36	-18.44	-16.38	43.40	#4	M70437,L306,X485
4952	53.1605007	-27.8649890	4.32		\mathbf{c}	25.47	-20.20	-16.50	42.90	#3	_
5375	53.1026292	-27.8606307	4.41		\mathbf{c}	25.16	-20.16	-16.66	42.75	#4	X331
5501	53.1280240	-27.8593930	5.39		с	25.71	-20.23	-16.45	43.10	#4	_
8687	53.0868634	-27.8295859	4.23		\mathbf{c}	26.90	-19.19	-16.43	42.90	#4	_
8884	53.1970699	-27.8278566	4.52		\mathbf{c}	25.74	-19.04	-16.77	42.65	#4	-
9713	53.1715890	-27.8208052	5.86	5.70^{2}	\mathbf{c}	26.54	-19.87	-16.46	43.15	#4	HUDF322
9945	53.1619508	-27.8190897	4.34	4.497^{3}	\mathbf{cd}	24.99	-20.93	-16.65	42.75	#4	_
11287	53.0689924	-27.8071692	4.94		\mathbf{c}	25.06	-20.48	-16.42	43.10	#4	M8728
12130	53.1514304	-27.7997601	4.43	4.62^{4}	\mathbf{c}	25.54	-20.60	-16.58	42.85	#5	HUDF3094
14800	53.0211735	-27.7823645	4.92	4.823^{5}	\mathbf{c}	23.43	-22.51	-16.38	43.10	#3	M10548
16822	53.1115637	-27.7677714	4.52		\mathbf{c}	25.67	-18.97	-15.91	43.85	#4	M70168,L245,X371
19713	53.1198898	-27.7430349	4.84		с	25.31	-18.14	-16.48	43.00	#4	E1516,X392
20765	53.1583449	-27.7334854	5.23		f	24.44	-21.06	-16.29	43.25	#3	E2551
23757	53.2036444	-27.7143907	4.13		с	24.56	-20.72	-16.49	42.85	#1	_
28476	53.0646867	-27.8625539	6.26		f	26.77	-19.03	-16.60	43.10	#4	M70407
29323	53.0409764	-27.8376619	9.73		cf	26.33	-19.50	-15.96	44.00	#3	M70340,L103,X156
31334	53.2131871	-27.7816486	4.73		f	26.41	-19.60	-15.69	43.75	#4	_
33073	53.0547529	-27.7368325	4.98		с	26.89	-19.19	-16.44	43.10	#2	E2199
33160	53.0062504	-27.7340678	6.06		cf	25.90	-19.62	-16.26	43.65	#3	E2498,L57,X85

(Giallongo et al. 2015)

Photometry of DCBHs

AGNs or DCBHs?

Comparing SEDs

Predicting Observables

ID 33160 (z=6.06)

Observations:

- mag H = 25.9(2) + / 0.2
- $Log(L_x) = 43.65 + / 0.12$

• z = 6.06

Our current prediction:

- mag H = 25.9(4)
- $Log(L_x) = 43.49$
- DCBH mass: $4 \times 10^6 \,\mathrm{M_{\odot}}$

Gravitational Waves from DCBHs

Simulation of GW emission from a collapsing and rotating SMS

Gravitational Waves from DCBHs

Classes of objects at high-z (z>6)

Galaxies:

• Stellar emission

First black holes (DCBHs):

- BH-only emission
- No stellar emission
- No metals

Early AGNs:

- BH emission
- Stellar emission

GOODS-S Infrared Colors

The SED of a DCBH

Colors of Other z>6 Objects

The High-z Criterion - Interpretation

High Redshift (z>6) In this period DCBHs are formed.

- No stellar emission: pure DCBH radiation.
- Optical depths in host halos are large.

Low Redshift (z<6)

Evolution acts via star formation and feedback.

- Stars are formed: DCBH spectrum approaches the spectrum of galaxies.
- Feedback reduces the optical depth: DCBH spectrum approaches the spectrum of AGNs.

Hypothesis: Evolution of Colors

