Unveiling the first black holes

Ricarte+; **Pacucci+**; **Cappelluti+**; Agarwal+; Haiman+; Tanaka+; Johnson+; Park+; Ricotti+; Khochfar+; Di Matteo+; Yoshida+ Schneider+Dubois+; Bournoud+; Ferrara+; Bromm+; Milosavljevic+; Ricotti+; Norman+; Omukai+; Inayoshi+; Regan+; Sijacki+; Loeb+; Habuzit+; Smith+; Volonteri+; Abel+; Wise+; Latif+; Whalen+; Trakhtenbrot+; Weigel+: Schawinski+;

Priyamvada Natarajan Yale University

MULTI-WAVELENGTH DATA FOR ACTIVE & QUIESCENT BHs

$$M_{BH} \sim 10^{6} \cdot 9 M_{sun}$$

even 1010 M_{sun}

z ∼ 0 − 7

the Big Bang

Urry+; Treister+; Scoville+; Sanders; Faber+;Wu+; Fan+; Fan+; Ferguson+; Harrison+; Hasinger+; Comastri+; Gilli+

The Most Massive Black Holes in the Universe

Lauer+ 05, 06; Bernardi+ 06; PN & Treister 09; McConnell+ 11,12; PN & Volonteri 13 Marziani & Sulentic 12; Mortlock+ 14; Wu+ 2015; Kulier+15; Thomas+ 16

BHMF FOR BLQSOs FROM SDSS 1 < z < 4.5

10

FIG. 3.— BLQSO BHMF (thin solid lines) obtained using our Bayesian approach, compared with the local BHMF fo all SMBHs (dashed line), and the BIIMF from <u>Vestergaard et al.</u> (2008, solid red line with points); as in Figure 1 each thin solid line denotes a random draw of the BHMF from its probability distribution. The thick green line is the median of the BHMF random draws, and may be considered our 'best-fit' estimate. The vertical line marks the mass at which the SDSS DR3 sample becomes 10% complete.

Kelly, Shen+ 10; 11

HIGH-z QUASARS & THE TIMING CRUNCH TO ASSEMBLE SMBHs

Bright quasars host 10⁹ - 10¹⁰ M_{sun} BHs

Age of the universe 1 Gyr Eddington limit growth rate of mass

$$\frac{dM}{dt} = \frac{L_{acc}}{\eta c^2} < \frac{4\pi GMm_p}{\eta c\sigma_T}$$
$$\frac{t}{M \leq M_0 e^{\tau}}$$
$$\tau = \frac{\eta c\sigma_T}{4\pi Gm_p} \approx 5 \times 10^7 yr$$

LATEST PLANCK RESULTS: first stars form even later!

Wu+ 15; Robertson+ 15; Planck+ XIII 15

MASS GROWTH OF BH SEEDS: TIME CRUNCH

$$\langle f_{
m Edd}
angle_t = rac{t_{
m Edd}}{t_{
m Hubble}(z)} rac{\epsilon}{1-\epsilon} \ln\left(rac{M_{
m BH}}{M_0}
ight).$$

$$L = \epsilon \, \dot{M}_{in} c^2 = f_{
m Edd} L_{
m Edd} c^2,$$

AGE OF THE UNIVERSE AT z = 7 [771 Myr]; z= 4[1.57 Gyr]; z= 3 [2.9 Gyr] PN+ 17; Treister+ 13 CONDITIONS REQUIRED TO ASSEMBLE THE MOST MASSIVE BLACK HOLES AT ALL EPOCHS

 Massive initial BH seeds – rapid early growth – at high z (trade–off between obscured growth vs. massive initial seeds)

The second second second and the second second second and the second second second second second second second

 Brief periods of super-Eddington accretion early on

 Periods of obscured growth during merger triggered phases

SYNOPSIS OF CURRENT VIEW ON BH SEEDS TO MAKE THE MOST MASSIVE HIGH-x BHs

Uncertainity in the masses of the first stars

A challenge to grow monster BHs seen by t < 2 Gyrs

New Planck results push first stars to later even ~550 Myrs after the Big Bang In protogalaxies: need to avoid fragmentation and star formation, need to centrally concentrate mass

- Metal-free gas
- Prevent molecular H-cooling

First black holes in pre-galactic halos z = 20-30

LIGHT SEEDS

Pop III remnants : Simulations suggest that the first stars have a range of masses (Bromm+ 02 ; Abel+ 02; Abel+ 00; Alvarez+ 08; Hirano+ 14) Metal free Pop III stars leave remnant BHs

Supra-exponential early growth boost: Super-Eddington growth in nuclear star clusters at high-z (Alexander & PN 14)

 ${
m M_{BH}}$ ~ 10³ - 10⁶ ${
m M_{sun}}$

MASSIVE SEEDS

Direct Collapse – efficient viscous transport, H2 cooling suppressed, Lyman-Werner radiation, formation of central concentration (Eisenstein & Loeb 95; Koushiappas+ 04)+ proper dynamical treatment of disk stability (Lodato & PN 06, 07)

Supermassive star (Haehnelt & Rees 93)

Quasi-star - Bar unstable self-gravitating gas + large quasi-star (Begelman 08; 10; 12)

PRIMORDIAL BLACK HOLES

Post-Inflation formation of black holes during the phase transition that ends expansion (Khlopov+ 07; 09) Unresolved CIRB, XRB Excess? CMBR distortions, no stringent constraints

HOW MASSIVE ARE POP III STARS?

~ Mass distribution of Pop III stars formed at $z = 30 \rightarrow 10$

Hirano+ 15

DO WE NEED MASSIVE BH SEEDS? Tracking the fate of PopIII seeds in 2.5-sigma peaks

BHs simply not growing much down to z = 8 even when PopIII formation has ceased BHs spend almost all their time in the wrong place in 10⁸ M_{sun} DM halos

Abel, Wise, Turk, Alvarez+; Stacy+

SUPER BOOSTING EARLY BH GROWTH

Circumventing the Eddington limit

Alexander & Natarajan 14

BH seed formation at high z

Baryons inside DM halo collapse and form a rotating pre-galactic disc

Disc becomes gravitationally unstable and accretes to the center

Angular mom of DM halo + Gas reservoir + dynamics (disc stability) + cooling

0.01pc

LYMAN WERNER PHOTONS FROM NEARBY SF HALO NEEDED TO DISSOCIATE MOL HYDROGEN TO PREVENT COOLING & FRAGMENTATION DCBHS FORM IN SATELLITE HALOS

FINAL DCBH MASS

Lodato & PN 06; 07; PN 11; Regan+ 12; 14; Latif & Ferrara 16

Massive BH seed formation simulations

Regan+ 08; 13; Hirano+ 14; Davis & PN 12; Bournaud+; Habuzit+ 14, 15; 13; Hirano+ 14

Choi, Shlosman & Begelman 13

OPTIMAL SITES FOR DCBH FORMATION

Low spin DM halos; satellite halos; Lyman-Werner radiation from nearby halos with star formation to dissociate mol H and prevent fragmentation

Direct Collapse Black Holes

Metal Free gas in atomic cooling halos (T_{vir} >10⁴ K):

predominantly atomic H Avoid fragmentation into stars: high densities Prevent H₂ formation (molecular hydrogen) in central region of halo; High level of LW radiation to dissociate H₂; SMS/Quasi-star followed by black hole of mass ~ 10⁴ M_{solar}; N ~1% of ~ 10⁷-10⁸ M_{sun} DM halos at z=15 form such seeds

Oh & Haiman 2002; Bromm & Loeb 2003; Begelman et al. 2006; Lodato & PN 2006; 2007, Spaans & Silk 2006; Latif+; Johnson+

Tracing the growth history of black holes in the universe

Ricarte, PN+ 16

Merger induced accretion + CDM merger trees + BH seeds

DCBH SEED PEAK MASS

Volonteri, Lodato & PN 08

Standard Accretion Slim Disk Accretion Steady trickle throughout cosmic time

Understanding what limits growth rates by accretion

Growth is faster for larger black hole masses

FEEDBACK LIMITED MODE

Inefficient growth, outflows, ~ 15% of gas accreted LOW MASS SEEDS

GAS SUPPLY LIMITED MODE Super-Eddington growth, outflows unimportant, low radiative efficiency ~ 80% of gas accreted MASSIVE SEEDS

Alexander & PN 14; Park+15; Pacucci+15

Model including stochastic accretion, flickering, mass cap

Ricarte & PN 17; Natarajan+ 17; Volonteri & PN 09

DIRECT COLLAPSE BHs AND THEIR OBESE BH HOST GALAXIES

Agarwal+ 12; 14

SCHEMATIC OF HIGH-Z JWST SOURCES

PN, Pacucci, Ferrara, Agarwal+ 16

DISCRIMINATING LIGHT & MASSIVE SEEDS WITH JWST

LIGHT SEEDS

MASSIVE SEEDS

MULTI-WAVELENGTH SPECTRAL PREDICTIONS

Pop III SEED + STELLAR COMPONENT SLIM DISK

DCBH SEED + STELLAR COMPONENT (OBG) SLIM DISK

Pacucci+ 15; 16; PN 16; PN, Pacucci, Ferrara, Agarwal+ 16

OBSERVATIONAL SIGNATURES OF DCBHs

~ JWST spectra for growing DCBHs Discriminant slope and amplitude between 1 - 10 microns

PN, Pacucci, Ferrara, Agarwal+ 16

WIDE-FIELD SURVEYS IN X-RAY & IR will reveal large scale high-z component

Cappelluti+ 13; 17

STATUS REPORT OF WHERE WE ARE & OPEN QUESTIONS

Masses of initial BH seeds Early accretion history of seed BHs Contribution to Re-ionization Observational signatures of Super-Eddington flows Importance of mergers Detection of signature of mergers – gravitational waves When do the correlations between BHs and their hosts get set-up

TCAN-MBH

The multi-scale physics of massive black holes

