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MoBvaBon:	Torus/host	galaxy	studies	of	AGN

AGNs in ULIRGs are buriedAGNs obscured by 
torus-shaped dust

Detectable via optical spectroscopy

NLR

Sy2

ⓒNASA

<10	pc

MIR	(torus)

X-ray	(corona)

(e.g.,	Stern+12,	Mateos+12)

unified	model:	Antonucci	&	Miller	85;	Urry	&	Padovani	95

torus	size:	Jaffe+04,	Hoenig+12,13,	Burtscher+13,	+16

☑	op'cal-UV:	accre'on	disk	
☑	X-ray:	accre'on	disk+hot	electron	corona	
☑	mid-IR	(MIR):	dusty	torus	(dust/gas	provider	to	SMBH)	
☑	far-IR	(FIR):	host	galaxy

AGN	Unified	Model	(but	see	also	Honig+13;	Wada+16)



Most	of	AGN	are	elusive	(=obscured)

☑	energy	density	peaks	at	~30	keV
☑	E>10	keV:	best	energy	band	to	detect	obscured	(log	NH>22)	AGN

Compton-thick	AGN

type-1	AGN

Ueda+14

Compton-thin		
type-2	AGN

XRB	indicates	that	most	of	AGN	are	obscured



Swi6/BAT	AGN	(14-195	keV)

☑	most	complete	up	to	logNH=24	in	the	local	Universe

☑		606	out	of	728	have	z	info	and	are	located	at	|b|>10°

Ueda+14

70	month	catalog:	836	AGN	(728	non-blazars)

Ricci	(incl.	KI)	et	al.	submiBed	to	ApJBaumgartner+13	and…

FYI,	104	month	catalog	is	upcoming	(Oh	et	al.,	in	prep)



IR	counterparts	of	BAT	AGN

☑		601/606	MIR	and	402/606	FIR	counterparts

Ueda+14

☑	3-500	um	IR	data	from	WISE,	AKARI,	IRAS,	and	Herschel
(see	Ichikawa+17	for	more	details)

☑	suitable	for	the	AGN	torus/host	galaxy	studies



Torus	studies



LMIR	vs.	L14-195keV

log	L12	∝	0.96log	LX

☑	b=0.9-1.1	from	local/X-ray	selected	AGN 
																								(e.g.,	Gandhi+09;	Ichikawa+12;	Asmus+15;	Mateos+15)

∴	slope	b=0.96

Our	study + type-1
×	type-2

MIR	emission:	isotropic

LMIR/Lx	(type-1)	~	LMIR/Lx	(type-2)



LMIR	vs.	L14-195keV

log	L12	∝	0.96log	LX

☑	b=0.9-1.1	from	local/X-ray	selected	AGN 
																								(e.g.,	Gandhi+09;	Ichikawa+12;	Asmus+15;	Mateos+15)

☑	b=1.2-1.3		from	luminous	op'cally	selected	AGN 
　																																																																																																		(e.g.,	Stern	’15)

∴	slope	b=0.96

X-ray	emission	is	inefficient	at	high-L	or	high-λEdd	end?	
																																																									(see	also	Vasudevan	&	Fabian	’07,	Ricci+16)

Our	study + type-1
×	type-2

MIR	emission:	isotropic

LMIR/Lx	(type-1)	~	LMIR/Lx	(type-2)



Consistency	with	dust	polar	emission

☑	type-1/-2	has	same	distribuBon	=>	isotropic	emission

☑	consistent	with	MIR	polar	emission	or	fountain	model
obs:	Honig+13,+14,	see	also	Asmus+16	
model:	Wada	12,	Wada+16



Dust	Covering	factor	(CT)	vs.	Lbol
Lx	=>	Lbol		(Marconi+04)	and		CT	∝	LMIR/Lbol	



Lx	=>	Lbol		(Marconi+04)	and		CT	∝	LMIR/Lbol	

☑	LMIR/Lbol	decreases	as	Lbol	increases	(KI+17,	Mateos+15,	Asmus+15)

consistent	with	“receding	torus	model”	(e.g.,	Lawrence	’91;	Claudio’s	talk)
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Figure 1. AGN classification in unified schemes. (a) In a smooth-density torus, everyone located inside the cone opening, such as observer 1, will see a type 1 source;
outside a type 2. (b) Decreasing the torus covering factor, the source becomes a type 1 AGN for more observers. (c) In a clumpy, soft-edge torus, the probability for a
direct view of the AGN decreases away from the axis, but is always finite.

reflection with R = 2.2+4.5
−1.1. While this finding contradicts sim-

plistic forms of unification, it is precisely the behavior expected
from its realistic formulation: Seyfert 1 and lightly obscured
Seyfert 2 correspond to different viewing angles of intrinsically
similar AGNs, drawn from the low end of the covering factor
distribution, thus they conform, on average, to simplistic unifi-
cation. But in mildly obscured Seyfert 2 the absorber/reflector
covers a larger fraction of the X-ray source, producing stronger
reflection that is not seen in the average Seyfert 1 spectrum,
where large covering factors are rare. The large difference be-
tween the average reflection spectra of Seyfert 1 and 2 arises
from significant differences in their torus covering factors.

3. COVERING FACTORS

The sometimes loosely invoked concept of “torus covering
factor,” CT, can be rigorously defined as the fraction of the sky
at the AGN center covered by obscuring material; it is the same
as the fraction of randomly distributed observers whose view
to the center is blocked, and thus see a type 2 AGN (Nenkova
et al. 2008a). Denote by N (i) the overall number of clouds
encountered, on average, along angle i from the axis. Then the
probability for direct viewing of the AGN from that direction is
e−N(i) and the torus covering factor is CT = 1 −

∫
e−N(i)d cos i.

If N0 is the average number of clouds along radial equatorial rays
then N (i) = N0Φ(i), where Φ(90◦) = 1. The cloud angular
distribution function Φ can be conveniently parameterized as
Gaussian, Φ(i) = e−(90−i)2/σ 2

, with σ the distribution angular
width (Elitzur et al. 2004; Nenkova et al. 2008b). Fitting of IR
observations with clumpy torus models with Gaussian angular
distributions has been reported by a number of teams, and
Figure 2 shows the results of these modeling efforts in the N0–σ
plane together with the contour plots of CT.2 As expected from
realistic unification, and first noted by Ramos Almeida et al.
(2009), type 1 and type 2 AGNs preferentially occupy different
regions in the plane. The few sources with a “wrong” covering
factor (large-CT type 1, small-CT type 2) merely reflect the
probabilistic nature of clumpy obscuration. Although this ad hoc
collection of AGNs, which were selected by different, unrelated
criteria, does not constitute a complete sample (only the Mor
et al. 2009 analysis of PG quasars involved a complete sample),
it does illustrate the point.

Since the covering factor measures the fraction of AGN
luminosity captured by the torus and converted to infrared, the
AGN IR luminosity is CTL, where L is its bolometric luminosity.
Therefore type 2 AGNs have intrinsically higher IR luminosities

2 Earlier versions of this figure were presented in Elitzur (2009; accessible at
http://www.mpe.mpg.de/events/pgn09/online_proceedings.html) and Ramos
Almeida et al. (2011). The contour plots in both of these earlier figures are
afflicted by the computer bug reported in Nenkova et al. (2010).

Figure 2. Clumpy torus covering factors. Contour plots are for a toroidal
Gaussian distribution, where the number of clouds along viewing angle i from
the axis is N0e

−(90−i)2/σ 2
, with N0 and σ free parameters. Each contour is the

locus of N0–σ combinations that produce the labeled covering factor. The data
points are from clumpy torus modeling of IR observations of AGNs reported in
Mor et al. (2009), Nikutta et al. (2009), Ramos Almeida et al. (2011), Alonso-
Herrero et al. (2011), and Deo et al. (2011).
(A color version of this figure is available in the online journal.)

than type 1. Contrary to earlier expectations of strong anisotropy
at λ ! 8 µm, Spitzer observations at this wavelength regime
show a great similarity between the IR fluxes of AGNs 1 and 2
when normalized with either their X-ray fluxes (Lutz et al. 2004;
Horst et al. 2006) or optically thin radio emission (Buchanan
et al. 2006). Part of this puzzle was solved by clumpy torus
calculations, which show much less anisotropy in IR emission
than the earlier smooth-density models (Nenkova et al. 2008b).
Realistic unification explains away the remainder.

While infrared arises from reprocessing of the AGN radiation
captured by the torus, narrow-line emission is generated by the
radiation that has escaped the torus. The narrow-line luminosity
is proportional to (1−CT)L. At the same bolometric luminosity,
type 1 AGNs can be expected to have a higher narrow-line
luminosity than type 2.

4. UNIFICATION STATISTICS

Implicitly or explicitly, all studies of AGN statistics as-
sume that type 1 and type 2 are intrinsically the same objects,
drawn randomly from the distribution of torus covering factors.
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Figure 1. AGN classification in unified schemes. (a) In a smooth-density torus, everyone located inside the cone opening, such as observer 1, will see a type 1 source;
outside a type 2. (b) Decreasing the torus covering factor, the source becomes a type 1 AGN for more observers. (c) In a clumpy, soft-edge torus, the probability for a
direct view of the AGN decreases away from the axis, but is always finite.

reflection with R = 2.2+4.5
−1.1. While this finding contradicts sim-

plistic forms of unification, it is precisely the behavior expected
from its realistic formulation: Seyfert 1 and lightly obscured
Seyfert 2 correspond to different viewing angles of intrinsically
similar AGNs, drawn from the low end of the covering factor
distribution, thus they conform, on average, to simplistic unifi-
cation. But in mildly obscured Seyfert 2 the absorber/reflector
covers a larger fraction of the X-ray source, producing stronger
reflection that is not seen in the average Seyfert 1 spectrum,
where large covering factors are rare. The large difference be-
tween the average reflection spectra of Seyfert 1 and 2 arises
from significant differences in their torus covering factors.

3. COVERING FACTORS

The sometimes loosely invoked concept of “torus covering
factor,” CT, can be rigorously defined as the fraction of the sky
at the AGN center covered by obscuring material; it is the same
as the fraction of randomly distributed observers whose view
to the center is blocked, and thus see a type 2 AGN (Nenkova
et al. 2008a). Denote by N (i) the overall number of clouds
encountered, on average, along angle i from the axis. Then the
probability for direct viewing of the AGN from that direction is
e−N(i) and the torus covering factor is CT = 1 −

∫
e−N(i)d cos i.

If N0 is the average number of clouds along radial equatorial rays
then N (i) = N0Φ(i), where Φ(90◦) = 1. The cloud angular
distribution function Φ can be conveniently parameterized as
Gaussian, Φ(i) = e−(90−i)2/σ 2

, with σ the distribution angular
width (Elitzur et al. 2004; Nenkova et al. 2008b). Fitting of IR
observations with clumpy torus models with Gaussian angular
distributions has been reported by a number of teams, and
Figure 2 shows the results of these modeling efforts in the N0–σ
plane together with the contour plots of CT.2 As expected from
realistic unification, and first noted by Ramos Almeida et al.
(2009), type 1 and type 2 AGNs preferentially occupy different
regions in the plane. The few sources with a “wrong” covering
factor (large-CT type 1, small-CT type 2) merely reflect the
probabilistic nature of clumpy obscuration. Although this ad hoc
collection of AGNs, which were selected by different, unrelated
criteria, does not constitute a complete sample (only the Mor
et al. 2009 analysis of PG quasars involved a complete sample),
it does illustrate the point.

Since the covering factor measures the fraction of AGN
luminosity captured by the torus and converted to infrared, the
AGN IR luminosity is CTL, where L is its bolometric luminosity.
Therefore type 2 AGNs have intrinsically higher IR luminosities

2 Earlier versions of this figure were presented in Elitzur (2009; accessible at
http://www.mpe.mpg.de/events/pgn09/online_proceedings.html) and Ramos
Almeida et al. (2011). The contour plots in both of these earlier figures are
afflicted by the computer bug reported in Nenkova et al. (2010).

Figure 2. Clumpy torus covering factors. Contour plots are for a toroidal
Gaussian distribution, where the number of clouds along viewing angle i from
the axis is N0e

−(90−i)2/σ 2
, with N0 and σ free parameters. Each contour is the

locus of N0–σ combinations that produce the labeled covering factor. The data
points are from clumpy torus modeling of IR observations of AGNs reported in
Mor et al. (2009), Nikutta et al. (2009), Ramos Almeida et al. (2011), Alonso-
Herrero et al. (2011), and Deo et al. (2011).
(A color version of this figure is available in the online journal.)

than type 1. Contrary to earlier expectations of strong anisotropy
at λ ! 8 µm, Spitzer observations at this wavelength regime
show a great similarity between the IR fluxes of AGNs 1 and 2
when normalized with either their X-ray fluxes (Lutz et al. 2004;
Horst et al. 2006) or optically thin radio emission (Buchanan
et al. 2006). Part of this puzzle was solved by clumpy torus
calculations, which show much less anisotropy in IR emission
than the earlier smooth-density models (Nenkova et al. 2008b).
Realistic unification explains away the remainder.

While infrared arises from reprocessing of the AGN radiation
captured by the torus, narrow-line emission is generated by the
radiation that has escaped the torus. The narrow-line luminosity
is proportional to (1−CT)L. At the same bolometric luminosity,
type 1 AGNs can be expected to have a higher narrow-line
luminosity than type 2.

4. UNIFICATION STATISTICS

Implicitly or explicitly, all studies of AGN statistics as-
sume that type 1 and type 2 are intrinsically the same objects,
drawn randomly from the distribution of torus covering factors.
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Figure 1. AGN classification in unified schemes. (a) In a smooth-density torus, everyone located inside the cone opening, such as observer 1, will see a type 1 source;
outside a type 2. (b) Decreasing the torus covering factor, the source becomes a type 1 AGN for more observers. (c) In a clumpy, soft-edge torus, the probability for a
direct view of the AGN decreases away from the axis, but is always finite.

reflection with R = 2.2+4.5
−1.1. While this finding contradicts sim-

plistic forms of unification, it is precisely the behavior expected
from its realistic formulation: Seyfert 1 and lightly obscured
Seyfert 2 correspond to different viewing angles of intrinsically
similar AGNs, drawn from the low end of the covering factor
distribution, thus they conform, on average, to simplistic unifi-
cation. But in mildly obscured Seyfert 2 the absorber/reflector
covers a larger fraction of the X-ray source, producing stronger
reflection that is not seen in the average Seyfert 1 spectrum,
where large covering factors are rare. The large difference be-
tween the average reflection spectra of Seyfert 1 and 2 arises
from significant differences in their torus covering factors.

3. COVERING FACTORS

The sometimes loosely invoked concept of “torus covering
factor,” CT, can be rigorously defined as the fraction of the sky
at the AGN center covered by obscuring material; it is the same
as the fraction of randomly distributed observers whose view
to the center is blocked, and thus see a type 2 AGN (Nenkova
et al. 2008a). Denote by N (i) the overall number of clouds
encountered, on average, along angle i from the axis. Then the
probability for direct viewing of the AGN from that direction is
e−N(i) and the torus covering factor is CT = 1 −

∫
e−N(i)d cos i.

If N0 is the average number of clouds along radial equatorial rays
then N (i) = N0Φ(i), where Φ(90◦) = 1. The cloud angular
distribution function Φ can be conveniently parameterized as
Gaussian, Φ(i) = e−(90−i)2/σ 2

, with σ the distribution angular
width (Elitzur et al. 2004; Nenkova et al. 2008b). Fitting of IR
observations with clumpy torus models with Gaussian angular
distributions has been reported by a number of teams, and
Figure 2 shows the results of these modeling efforts in the N0–σ
plane together with the contour plots of CT.2 As expected from
realistic unification, and first noted by Ramos Almeida et al.
(2009), type 1 and type 2 AGNs preferentially occupy different
regions in the plane. The few sources with a “wrong” covering
factor (large-CT type 1, small-CT type 2) merely reflect the
probabilistic nature of clumpy obscuration. Although this ad hoc
collection of AGNs, which were selected by different, unrelated
criteria, does not constitute a complete sample (only the Mor
et al. 2009 analysis of PG quasars involved a complete sample),
it does illustrate the point.

Since the covering factor measures the fraction of AGN
luminosity captured by the torus and converted to infrared, the
AGN IR luminosity is CTL, where L is its bolometric luminosity.
Therefore type 2 AGNs have intrinsically higher IR luminosities

2 Earlier versions of this figure were presented in Elitzur (2009; accessible at
http://www.mpe.mpg.de/events/pgn09/online_proceedings.html) and Ramos
Almeida et al. (2011). The contour plots in both of these earlier figures are
afflicted by the computer bug reported in Nenkova et al. (2010).

Figure 2. Clumpy torus covering factors. Contour plots are for a toroidal
Gaussian distribution, where the number of clouds along viewing angle i from
the axis is N0e

−(90−i)2/σ 2
, with N0 and σ free parameters. Each contour is the

locus of N0–σ combinations that produce the labeled covering factor. The data
points are from clumpy torus modeling of IR observations of AGNs reported in
Mor et al. (2009), Nikutta et al. (2009), Ramos Almeida et al. (2011), Alonso-
Herrero et al. (2011), and Deo et al. (2011).
(A color version of this figure is available in the online journal.)

than type 1. Contrary to earlier expectations of strong anisotropy
at λ ! 8 µm, Spitzer observations at this wavelength regime
show a great similarity between the IR fluxes of AGNs 1 and 2
when normalized with either their X-ray fluxes (Lutz et al. 2004;
Horst et al. 2006) or optically thin radio emission (Buchanan
et al. 2006). Part of this puzzle was solved by clumpy torus
calculations, which show much less anisotropy in IR emission
than the earlier smooth-density models (Nenkova et al. 2008b).
Realistic unification explains away the remainder.

While infrared arises from reprocessing of the AGN radiation
captured by the torus, narrow-line emission is generated by the
radiation that has escaped the torus. The narrow-line luminosity
is proportional to (1−CT)L. At the same bolometric luminosity,
type 1 AGNs can be expected to have a higher narrow-line
luminosity than type 2.

4. UNIFICATION STATISTICS

Implicitly or explicitly, all studies of AGN statistics as-
sume that type 1 and type 2 are intrinsically the same objects,
drawn randomly from the distribution of torus covering factors.
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Figure 1. AGN classification in unified schemes. (a) In a smooth-density torus, everyone located inside the cone opening, such as observer 1, will see a type 1 source;
outside a type 2. (b) Decreasing the torus covering factor, the source becomes a type 1 AGN for more observers. (c) In a clumpy, soft-edge torus, the probability for a
direct view of the AGN decreases away from the axis, but is always finite.

reflection with R = 2.2+4.5
−1.1. While this finding contradicts sim-

plistic forms of unification, it is precisely the behavior expected
from its realistic formulation: Seyfert 1 and lightly obscured
Seyfert 2 correspond to different viewing angles of intrinsically
similar AGNs, drawn from the low end of the covering factor
distribution, thus they conform, on average, to simplistic unifi-
cation. But in mildly obscured Seyfert 2 the absorber/reflector
covers a larger fraction of the X-ray source, producing stronger
reflection that is not seen in the average Seyfert 1 spectrum,
where large covering factors are rare. The large difference be-
tween the average reflection spectra of Seyfert 1 and 2 arises
from significant differences in their torus covering factors.

3. COVERING FACTORS

The sometimes loosely invoked concept of “torus covering
factor,” CT, can be rigorously defined as the fraction of the sky
at the AGN center covered by obscuring material; it is the same
as the fraction of randomly distributed observers whose view
to the center is blocked, and thus see a type 2 AGN (Nenkova
et al. 2008a). Denote by N (i) the overall number of clouds
encountered, on average, along angle i from the axis. Then the
probability for direct viewing of the AGN from that direction is
e−N(i) and the torus covering factor is CT = 1 −

∫
e−N(i)d cos i.

If N0 is the average number of clouds along radial equatorial rays
then N (i) = N0Φ(i), where Φ(90◦) = 1. The cloud angular
distribution function Φ can be conveniently parameterized as
Gaussian, Φ(i) = e−(90−i)2/σ 2

, with σ the distribution angular
width (Elitzur et al. 2004; Nenkova et al. 2008b). Fitting of IR
observations with clumpy torus models with Gaussian angular
distributions has been reported by a number of teams, and
Figure 2 shows the results of these modeling efforts in the N0–σ
plane together with the contour plots of CT.2 As expected from
realistic unification, and first noted by Ramos Almeida et al.
(2009), type 1 and type 2 AGNs preferentially occupy different
regions in the plane. The few sources with a “wrong” covering
factor (large-CT type 1, small-CT type 2) merely reflect the
probabilistic nature of clumpy obscuration. Although this ad hoc
collection of AGNs, which were selected by different, unrelated
criteria, does not constitute a complete sample (only the Mor
et al. 2009 analysis of PG quasars involved a complete sample),
it does illustrate the point.

Since the covering factor measures the fraction of AGN
luminosity captured by the torus and converted to infrared, the
AGN IR luminosity is CTL, where L is its bolometric luminosity.
Therefore type 2 AGNs have intrinsically higher IR luminosities

2 Earlier versions of this figure were presented in Elitzur (2009; accessible at
http://www.mpe.mpg.de/events/pgn09/online_proceedings.html) and Ramos
Almeida et al. (2011). The contour plots in both of these earlier figures are
afflicted by the computer bug reported in Nenkova et al. (2010).

Figure 2. Clumpy torus covering factors. Contour plots are for a toroidal
Gaussian distribution, where the number of clouds along viewing angle i from
the axis is N0e

−(90−i)2/σ 2
, with N0 and σ free parameters. Each contour is the

locus of N0–σ combinations that produce the labeled covering factor. The data
points are from clumpy torus modeling of IR observations of AGNs reported in
Mor et al. (2009), Nikutta et al. (2009), Ramos Almeida et al. (2011), Alonso-
Herrero et al. (2011), and Deo et al. (2011).
(A color version of this figure is available in the online journal.)

than type 1. Contrary to earlier expectations of strong anisotropy
at λ ! 8 µm, Spitzer observations at this wavelength regime
show a great similarity between the IR fluxes of AGNs 1 and 2
when normalized with either their X-ray fluxes (Lutz et al. 2004;
Horst et al. 2006) or optically thin radio emission (Buchanan
et al. 2006). Part of this puzzle was solved by clumpy torus
calculations, which show much less anisotropy in IR emission
than the earlier smooth-density models (Nenkova et al. 2008b).
Realistic unification explains away the remainder.

While infrared arises from reprocessing of the AGN radiation
captured by the torus, narrow-line emission is generated by the
radiation that has escaped the torus. The narrow-line luminosity
is proportional to (1−CT)L. At the same bolometric luminosity,
type 1 AGNs can be expected to have a higher narrow-line
luminosity than type 2.

4. UNIFICATION STATISTICS

Implicitly or explicitly, all studies of AGN statistics as-
sume that type 1 and type 2 are intrinsically the same objects,
drawn randomly from the distribution of torus covering factors.
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Figure 1. AGN classification in unified schemes. (a) In a smooth-density torus, everyone located inside the cone opening, such as observer 1, will see a type 1 source;
outside a type 2. (b) Decreasing the torus covering factor, the source becomes a type 1 AGN for more observers. (c) In a clumpy, soft-edge torus, the probability for a
direct view of the AGN decreases away from the axis, but is always finite.

reflection with R = 2.2+4.5
−1.1. While this finding contradicts sim-

plistic forms of unification, it is precisely the behavior expected
from its realistic formulation: Seyfert 1 and lightly obscured
Seyfert 2 correspond to different viewing angles of intrinsically
similar AGNs, drawn from the low end of the covering factor
distribution, thus they conform, on average, to simplistic unifi-
cation. But in mildly obscured Seyfert 2 the absorber/reflector
covers a larger fraction of the X-ray source, producing stronger
reflection that is not seen in the average Seyfert 1 spectrum,
where large covering factors are rare. The large difference be-
tween the average reflection spectra of Seyfert 1 and 2 arises
from significant differences in their torus covering factors.
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The sometimes loosely invoked concept of “torus covering
factor,” CT, can be rigorously defined as the fraction of the sky
at the AGN center covered by obscuring material; it is the same
as the fraction of randomly distributed observers whose view
to the center is blocked, and thus see a type 2 AGN (Nenkova
et al. 2008a). Denote by N (i) the overall number of clouds
encountered, on average, along angle i from the axis. Then the
probability for direct viewing of the AGN from that direction is
e−N(i) and the torus covering factor is CT = 1 −

∫
e−N(i)d cos i.

If N0 is the average number of clouds along radial equatorial rays
then N (i) = N0Φ(i), where Φ(90◦) = 1. The cloud angular
distribution function Φ can be conveniently parameterized as
Gaussian, Φ(i) = e−(90−i)2/σ 2

, with σ the distribution angular
width (Elitzur et al. 2004; Nenkova et al. 2008b). Fitting of IR
observations with clumpy torus models with Gaussian angular
distributions has been reported by a number of teams, and
Figure 2 shows the results of these modeling efforts in the N0–σ
plane together with the contour plots of CT.2 As expected from
realistic unification, and first noted by Ramos Almeida et al.
(2009), type 1 and type 2 AGNs preferentially occupy different
regions in the plane. The few sources with a “wrong” covering
factor (large-CT type 1, small-CT type 2) merely reflect the
probabilistic nature of clumpy obscuration. Although this ad hoc
collection of AGNs, which were selected by different, unrelated
criteria, does not constitute a complete sample (only the Mor
et al. 2009 analysis of PG quasars involved a complete sample),
it does illustrate the point.

Since the covering factor measures the fraction of AGN
luminosity captured by the torus and converted to infrared, the
AGN IR luminosity is CTL, where L is its bolometric luminosity.
Therefore type 2 AGNs have intrinsically higher IR luminosities

2 Earlier versions of this figure were presented in Elitzur (2009; accessible at
http://www.mpe.mpg.de/events/pgn09/online_proceedings.html) and Ramos
Almeida et al. (2011). The contour plots in both of these earlier figures are
afflicted by the computer bug reported in Nenkova et al. (2010).

Figure 2. Clumpy torus covering factors. Contour plots are for a toroidal
Gaussian distribution, where the number of clouds along viewing angle i from
the axis is N0e

−(90−i)2/σ 2
, with N0 and σ free parameters. Each contour is the

locus of N0–σ combinations that produce the labeled covering factor. The data
points are from clumpy torus modeling of IR observations of AGNs reported in
Mor et al. (2009), Nikutta et al. (2009), Ramos Almeida et al. (2011), Alonso-
Herrero et al. (2011), and Deo et al. (2011).
(A color version of this figure is available in the online journal.)

than type 1. Contrary to earlier expectations of strong anisotropy
at λ ! 8 µm, Spitzer observations at this wavelength regime
show a great similarity between the IR fluxes of AGNs 1 and 2
when normalized with either their X-ray fluxes (Lutz et al. 2004;
Horst et al. 2006) or optically thin radio emission (Buchanan
et al. 2006). Part of this puzzle was solved by clumpy torus
calculations, which show much less anisotropy in IR emission
than the earlier smooth-density models (Nenkova et al. 2008b).
Realistic unification explains away the remainder.

While infrared arises from reprocessing of the AGN radiation
captured by the torus, narrow-line emission is generated by the
radiation that has escaped the torus. The narrow-line luminosity
is proportional to (1−CT)L. At the same bolometric luminosity,
type 1 AGNs can be expected to have a higher narrow-line
luminosity than type 2.

4. UNIFICATION STATISTICS

Implicitly or explicitly, all studies of AGN statistics as-
sume that type 1 and type 2 are intrinsically the same objects,
drawn randomly from the distribution of torus covering factors.
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Figure 1. AGN classification in unified schemes. (a) In a smooth-density torus, everyone located inside the cone opening, such as observer 1, will see a type 1 source;
outside a type 2. (b) Decreasing the torus covering factor, the source becomes a type 1 AGN for more observers. (c) In a clumpy, soft-edge torus, the probability for a
direct view of the AGN decreases away from the axis, but is always finite.

reflection with R = 2.2+4.5
−1.1. While this finding contradicts sim-

plistic forms of unification, it is precisely the behavior expected
from its realistic formulation: Seyfert 1 and lightly obscured
Seyfert 2 correspond to different viewing angles of intrinsically
similar AGNs, drawn from the low end of the covering factor
distribution, thus they conform, on average, to simplistic unifi-
cation. But in mildly obscured Seyfert 2 the absorber/reflector
covers a larger fraction of the X-ray source, producing stronger
reflection that is not seen in the average Seyfert 1 spectrum,
where large covering factors are rare. The large difference be-
tween the average reflection spectra of Seyfert 1 and 2 arises
from significant differences in their torus covering factors.

3. COVERING FACTORS

The sometimes loosely invoked concept of “torus covering
factor,” CT, can be rigorously defined as the fraction of the sky
at the AGN center covered by obscuring material; it is the same
as the fraction of randomly distributed observers whose view
to the center is blocked, and thus see a type 2 AGN (Nenkova
et al. 2008a). Denote by N (i) the overall number of clouds
encountered, on average, along angle i from the axis. Then the
probability for direct viewing of the AGN from that direction is
e−N(i) and the torus covering factor is CT = 1 −

∫
e−N(i)d cos i.

If N0 is the average number of clouds along radial equatorial rays
then N (i) = N0Φ(i), where Φ(90◦) = 1. The cloud angular
distribution function Φ can be conveniently parameterized as
Gaussian, Φ(i) = e−(90−i)2/σ 2

, with σ the distribution angular
width (Elitzur et al. 2004; Nenkova et al. 2008b). Fitting of IR
observations with clumpy torus models with Gaussian angular
distributions has been reported by a number of teams, and
Figure 2 shows the results of these modeling efforts in the N0–σ
plane together with the contour plots of CT.2 As expected from
realistic unification, and first noted by Ramos Almeida et al.
(2009), type 1 and type 2 AGNs preferentially occupy different
regions in the plane. The few sources with a “wrong” covering
factor (large-CT type 1, small-CT type 2) merely reflect the
probabilistic nature of clumpy obscuration. Although this ad hoc
collection of AGNs, which were selected by different, unrelated
criteria, does not constitute a complete sample (only the Mor
et al. 2009 analysis of PG quasars involved a complete sample),
it does illustrate the point.

Since the covering factor measures the fraction of AGN
luminosity captured by the torus and converted to infrared, the
AGN IR luminosity is CTL, where L is its bolometric luminosity.
Therefore type 2 AGNs have intrinsically higher IR luminosities

2 Earlier versions of this figure were presented in Elitzur (2009; accessible at
http://www.mpe.mpg.de/events/pgn09/online_proceedings.html) and Ramos
Almeida et al. (2011). The contour plots in both of these earlier figures are
afflicted by the computer bug reported in Nenkova et al. (2010).

Figure 2. Clumpy torus covering factors. Contour plots are for a toroidal
Gaussian distribution, where the number of clouds along viewing angle i from
the axis is N0e

−(90−i)2/σ 2
, with N0 and σ free parameters. Each contour is the

locus of N0–σ combinations that produce the labeled covering factor. The data
points are from clumpy torus modeling of IR observations of AGNs reported in
Mor et al. (2009), Nikutta et al. (2009), Ramos Almeida et al. (2011), Alonso-
Herrero et al. (2011), and Deo et al. (2011).
(A color version of this figure is available in the online journal.)

than type 1. Contrary to earlier expectations of strong anisotropy
at λ ! 8 µm, Spitzer observations at this wavelength regime
show a great similarity between the IR fluxes of AGNs 1 and 2
when normalized with either their X-ray fluxes (Lutz et al. 2004;
Horst et al. 2006) or optically thin radio emission (Buchanan
et al. 2006). Part of this puzzle was solved by clumpy torus
calculations, which show much less anisotropy in IR emission
than the earlier smooth-density models (Nenkova et al. 2008b).
Realistic unification explains away the remainder.

While infrared arises from reprocessing of the AGN radiation
captured by the torus, narrow-line emission is generated by the
radiation that has escaped the torus. The narrow-line luminosity
is proportional to (1−CT)L. At the same bolometric luminosity,
type 1 AGNs can be expected to have a higher narrow-line
luminosity than type 2.

4. UNIFICATION STATISTICS

Implicitly or explicitly, all studies of AGN statistics as-
sume that type 1 and type 2 are intrinsically the same objects,
drawn randomly from the distribution of torus covering factors.
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Figure 1. AGN classification in unified schemes. (a) In a smooth-density torus, everyone located inside the cone opening, such as observer 1, will see a type 1 source;
outside a type 2. (b) Decreasing the torus covering factor, the source becomes a type 1 AGN for more observers. (c) In a clumpy, soft-edge torus, the probability for a
direct view of the AGN decreases away from the axis, but is always finite.

reflection with R = 2.2+4.5
−1.1. While this finding contradicts sim-

plistic forms of unification, it is precisely the behavior expected
from its realistic formulation: Seyfert 1 and lightly obscured
Seyfert 2 correspond to different viewing angles of intrinsically
similar AGNs, drawn from the low end of the covering factor
distribution, thus they conform, on average, to simplistic unifi-
cation. But in mildly obscured Seyfert 2 the absorber/reflector
covers a larger fraction of the X-ray source, producing stronger
reflection that is not seen in the average Seyfert 1 spectrum,
where large covering factors are rare. The large difference be-
tween the average reflection spectra of Seyfert 1 and 2 arises
from significant differences in their torus covering factors.

3. COVERING FACTORS

The sometimes loosely invoked concept of “torus covering
factor,” CT, can be rigorously defined as the fraction of the sky
at the AGN center covered by obscuring material; it is the same
as the fraction of randomly distributed observers whose view
to the center is blocked, and thus see a type 2 AGN (Nenkova
et al. 2008a). Denote by N (i) the overall number of clouds
encountered, on average, along angle i from the axis. Then the
probability for direct viewing of the AGN from that direction is
e−N(i) and the torus covering factor is CT = 1 −

∫
e−N(i)d cos i.

If N0 is the average number of clouds along radial equatorial rays
then N (i) = N0Φ(i), where Φ(90◦) = 1. The cloud angular
distribution function Φ can be conveniently parameterized as
Gaussian, Φ(i) = e−(90−i)2/σ 2

, with σ the distribution angular
width (Elitzur et al. 2004; Nenkova et al. 2008b). Fitting of IR
observations with clumpy torus models with Gaussian angular
distributions has been reported by a number of teams, and
Figure 2 shows the results of these modeling efforts in the N0–σ
plane together with the contour plots of CT.2 As expected from
realistic unification, and first noted by Ramos Almeida et al.
(2009), type 1 and type 2 AGNs preferentially occupy different
regions in the plane. The few sources with a “wrong” covering
factor (large-CT type 1, small-CT type 2) merely reflect the
probabilistic nature of clumpy obscuration. Although this ad hoc
collection of AGNs, which were selected by different, unrelated
criteria, does not constitute a complete sample (only the Mor
et al. 2009 analysis of PG quasars involved a complete sample),
it does illustrate the point.

Since the covering factor measures the fraction of AGN
luminosity captured by the torus and converted to infrared, the
AGN IR luminosity is CTL, where L is its bolometric luminosity.
Therefore type 2 AGNs have intrinsically higher IR luminosities

2 Earlier versions of this figure were presented in Elitzur (2009; accessible at
http://www.mpe.mpg.de/events/pgn09/online_proceedings.html) and Ramos
Almeida et al. (2011). The contour plots in both of these earlier figures are
afflicted by the computer bug reported in Nenkova et al. (2010).

Figure 2. Clumpy torus covering factors. Contour plots are for a toroidal
Gaussian distribution, where the number of clouds along viewing angle i from
the axis is N0e

−(90−i)2/σ 2
, with N0 and σ free parameters. Each contour is the

locus of N0–σ combinations that produce the labeled covering factor. The data
points are from clumpy torus modeling of IR observations of AGNs reported in
Mor et al. (2009), Nikutta et al. (2009), Ramos Almeida et al. (2011), Alonso-
Herrero et al. (2011), and Deo et al. (2011).
(A color version of this figure is available in the online journal.)

than type 1. Contrary to earlier expectations of strong anisotropy
at λ ! 8 µm, Spitzer observations at this wavelength regime
show a great similarity between the IR fluxes of AGNs 1 and 2
when normalized with either their X-ray fluxes (Lutz et al. 2004;
Horst et al. 2006) or optically thin radio emission (Buchanan
et al. 2006). Part of this puzzle was solved by clumpy torus
calculations, which show much less anisotropy in IR emission
than the earlier smooth-density models (Nenkova et al. 2008b).
Realistic unification explains away the remainder.

While infrared arises from reprocessing of the AGN radiation
captured by the torus, narrow-line emission is generated by the
radiation that has escaped the torus. The narrow-line luminosity
is proportional to (1−CT)L. At the same bolometric luminosity,
type 1 AGNs can be expected to have a higher narrow-line
luminosity than type 2.

4. UNIFICATION STATISTICS

Implicitly or explicitly, all studies of AGN statistics as-
sume that type 1 and type 2 are intrinsically the same objects,
drawn randomly from the distribution of torus covering factors.
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Figure 1. AGN classification in unified schemes. (a) In a smooth-density torus, everyone located inside the cone opening, such as observer 1, will see a type 1 source;
outside a type 2. (b) Decreasing the torus covering factor, the source becomes a type 1 AGN for more observers. (c) In a clumpy, soft-edge torus, the probability for a
direct view of the AGN decreases away from the axis, but is always finite.

reflection with R = 2.2+4.5
−1.1. While this finding contradicts sim-

plistic forms of unification, it is precisely the behavior expected
from its realistic formulation: Seyfert 1 and lightly obscured
Seyfert 2 correspond to different viewing angles of intrinsically
similar AGNs, drawn from the low end of the covering factor
distribution, thus they conform, on average, to simplistic unifi-
cation. But in mildly obscured Seyfert 2 the absorber/reflector
covers a larger fraction of the X-ray source, producing stronger
reflection that is not seen in the average Seyfert 1 spectrum,
where large covering factors are rare. The large difference be-
tween the average reflection spectra of Seyfert 1 and 2 arises
from significant differences in their torus covering factors.

3. COVERING FACTORS

The sometimes loosely invoked concept of “torus covering
factor,” CT, can be rigorously defined as the fraction of the sky
at the AGN center covered by obscuring material; it is the same
as the fraction of randomly distributed observers whose view
to the center is blocked, and thus see a type 2 AGN (Nenkova
et al. 2008a). Denote by N (i) the overall number of clouds
encountered, on average, along angle i from the axis. Then the
probability for direct viewing of the AGN from that direction is
e−N(i) and the torus covering factor is CT = 1 −

∫
e−N(i)d cos i.

If N0 is the average number of clouds along radial equatorial rays
then N (i) = N0Φ(i), where Φ(90◦) = 1. The cloud angular
distribution function Φ can be conveniently parameterized as
Gaussian, Φ(i) = e−(90−i)2/σ 2

, with σ the distribution angular
width (Elitzur et al. 2004; Nenkova et al. 2008b). Fitting of IR
observations with clumpy torus models with Gaussian angular
distributions has been reported by a number of teams, and
Figure 2 shows the results of these modeling efforts in the N0–σ
plane together with the contour plots of CT.2 As expected from
realistic unification, and first noted by Ramos Almeida et al.
(2009), type 1 and type 2 AGNs preferentially occupy different
regions in the plane. The few sources with a “wrong” covering
factor (large-CT type 1, small-CT type 2) merely reflect the
probabilistic nature of clumpy obscuration. Although this ad hoc
collection of AGNs, which were selected by different, unrelated
criteria, does not constitute a complete sample (only the Mor
et al. 2009 analysis of PG quasars involved a complete sample),
it does illustrate the point.

Since the covering factor measures the fraction of AGN
luminosity captured by the torus and converted to infrared, the
AGN IR luminosity is CTL, where L is its bolometric luminosity.
Therefore type 2 AGNs have intrinsically higher IR luminosities

2 Earlier versions of this figure were presented in Elitzur (2009; accessible at
http://www.mpe.mpg.de/events/pgn09/online_proceedings.html) and Ramos
Almeida et al. (2011). The contour plots in both of these earlier figures are
afflicted by the computer bug reported in Nenkova et al. (2010).

Figure 2. Clumpy torus covering factors. Contour plots are for a toroidal
Gaussian distribution, where the number of clouds along viewing angle i from
the axis is N0e

−(90−i)2/σ 2
, with N0 and σ free parameters. Each contour is the

locus of N0–σ combinations that produce the labeled covering factor. The data
points are from clumpy torus modeling of IR observations of AGNs reported in
Mor et al. (2009), Nikutta et al. (2009), Ramos Almeida et al. (2011), Alonso-
Herrero et al. (2011), and Deo et al. (2011).
(A color version of this figure is available in the online journal.)

than type 1. Contrary to earlier expectations of strong anisotropy
at λ ! 8 µm, Spitzer observations at this wavelength regime
show a great similarity between the IR fluxes of AGNs 1 and 2
when normalized with either their X-ray fluxes (Lutz et al. 2004;
Horst et al. 2006) or optically thin radio emission (Buchanan
et al. 2006). Part of this puzzle was solved by clumpy torus
calculations, which show much less anisotropy in IR emission
than the earlier smooth-density models (Nenkova et al. 2008b).
Realistic unification explains away the remainder.

While infrared arises from reprocessing of the AGN radiation
captured by the torus, narrow-line emission is generated by the
radiation that has escaped the torus. The narrow-line luminosity
is proportional to (1−CT)L. At the same bolometric luminosity,
type 1 AGNs can be expected to have a higher narrow-line
luminosity than type 2.

4. UNIFICATION STATISTICS

Implicitly or explicitly, all studies of AGN statistics as-
sume that type 1 and type 2 are intrinsically the same objects,
drawn randomly from the distribution of torus covering factors.
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Figure 1. AGN classification in unified schemes. (a) In a smooth-density torus, everyone located inside the cone opening, such as observer 1, will see a type 1 source;
outside a type 2. (b) Decreasing the torus covering factor, the source becomes a type 1 AGN for more observers. (c) In a clumpy, soft-edge torus, the probability for a
direct view of the AGN decreases away from the axis, but is always finite.

reflection with R = 2.2+4.5
−1.1. While this finding contradicts sim-

plistic forms of unification, it is precisely the behavior expected
from its realistic formulation: Seyfert 1 and lightly obscured
Seyfert 2 correspond to different viewing angles of intrinsically
similar AGNs, drawn from the low end of the covering factor
distribution, thus they conform, on average, to simplistic unifi-
cation. But in mildly obscured Seyfert 2 the absorber/reflector
covers a larger fraction of the X-ray source, producing stronger
reflection that is not seen in the average Seyfert 1 spectrum,
where large covering factors are rare. The large difference be-
tween the average reflection spectra of Seyfert 1 and 2 arises
from significant differences in their torus covering factors.

3. COVERING FACTORS

The sometimes loosely invoked concept of “torus covering
factor,” CT, can be rigorously defined as the fraction of the sky
at the AGN center covered by obscuring material; it is the same
as the fraction of randomly distributed observers whose view
to the center is blocked, and thus see a type 2 AGN (Nenkova
et al. 2008a). Denote by N (i) the overall number of clouds
encountered, on average, along angle i from the axis. Then the
probability for direct viewing of the AGN from that direction is
e−N(i) and the torus covering factor is CT = 1 −

∫
e−N(i)d cos i.

If N0 is the average number of clouds along radial equatorial rays
then N (i) = N0Φ(i), where Φ(90◦) = 1. The cloud angular
distribution function Φ can be conveniently parameterized as
Gaussian, Φ(i) = e−(90−i)2/σ 2

, with σ the distribution angular
width (Elitzur et al. 2004; Nenkova et al. 2008b). Fitting of IR
observations with clumpy torus models with Gaussian angular
distributions has been reported by a number of teams, and
Figure 2 shows the results of these modeling efforts in the N0–σ
plane together with the contour plots of CT.2 As expected from
realistic unification, and first noted by Ramos Almeida et al.
(2009), type 1 and type 2 AGNs preferentially occupy different
regions in the plane. The few sources with a “wrong” covering
factor (large-CT type 1, small-CT type 2) merely reflect the
probabilistic nature of clumpy obscuration. Although this ad hoc
collection of AGNs, which were selected by different, unrelated
criteria, does not constitute a complete sample (only the Mor
et al. 2009 analysis of PG quasars involved a complete sample),
it does illustrate the point.

Since the covering factor measures the fraction of AGN
luminosity captured by the torus and converted to infrared, the
AGN IR luminosity is CTL, where L is its bolometric luminosity.
Therefore type 2 AGNs have intrinsically higher IR luminosities

2 Earlier versions of this figure were presented in Elitzur (2009; accessible at
http://www.mpe.mpg.de/events/pgn09/online_proceedings.html) and Ramos
Almeida et al. (2011). The contour plots in both of these earlier figures are
afflicted by the computer bug reported in Nenkova et al. (2010).

Figure 2. Clumpy torus covering factors. Contour plots are for a toroidal
Gaussian distribution, where the number of clouds along viewing angle i from
the axis is N0e

−(90−i)2/σ 2
, with N0 and σ free parameters. Each contour is the

locus of N0–σ combinations that produce the labeled covering factor. The data
points are from clumpy torus modeling of IR observations of AGNs reported in
Mor et al. (2009), Nikutta et al. (2009), Ramos Almeida et al. (2011), Alonso-
Herrero et al. (2011), and Deo et al. (2011).
(A color version of this figure is available in the online journal.)

than type 1. Contrary to earlier expectations of strong anisotropy
at λ ! 8 µm, Spitzer observations at this wavelength regime
show a great similarity between the IR fluxes of AGNs 1 and 2
when normalized with either their X-ray fluxes (Lutz et al. 2004;
Horst et al. 2006) or optically thin radio emission (Buchanan
et al. 2006). Part of this puzzle was solved by clumpy torus
calculations, which show much less anisotropy in IR emission
than the earlier smooth-density models (Nenkova et al. 2008b).
Realistic unification explains away the remainder.

While infrared arises from reprocessing of the AGN radiation
captured by the torus, narrow-line emission is generated by the
radiation that has escaped the torus. The narrow-line luminosity
is proportional to (1−CT)L. At the same bolometric luminosity,
type 1 AGNs can be expected to have a higher narrow-line
luminosity than type 2.

4. UNIFICATION STATISTICS

Implicitly or explicitly, all studies of AGN statistics as-
sume that type 1 and type 2 are intrinsically the same objects,
drawn randomly from the distribution of torus covering factors.
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Figure 1. AGN classification in unified schemes. (a) In a smooth-density torus, everyone located inside the cone opening, such as observer 1, will see a type 1 source;
outside a type 2. (b) Decreasing the torus covering factor, the source becomes a type 1 AGN for more observers. (c) In a clumpy, soft-edge torus, the probability for a
direct view of the AGN decreases away from the axis, but is always finite.

reflection with R = 2.2+4.5
−1.1. While this finding contradicts sim-

plistic forms of unification, it is precisely the behavior expected
from its realistic formulation: Seyfert 1 and lightly obscured
Seyfert 2 correspond to different viewing angles of intrinsically
similar AGNs, drawn from the low end of the covering factor
distribution, thus they conform, on average, to simplistic unifi-
cation. But in mildly obscured Seyfert 2 the absorber/reflector
covers a larger fraction of the X-ray source, producing stronger
reflection that is not seen in the average Seyfert 1 spectrum,
where large covering factors are rare. The large difference be-
tween the average reflection spectra of Seyfert 1 and 2 arises
from significant differences in their torus covering factors.

3. COVERING FACTORS

The sometimes loosely invoked concept of “torus covering
factor,” CT, can be rigorously defined as the fraction of the sky
at the AGN center covered by obscuring material; it is the same
as the fraction of randomly distributed observers whose view
to the center is blocked, and thus see a type 2 AGN (Nenkova
et al. 2008a). Denote by N (i) the overall number of clouds
encountered, on average, along angle i from the axis. Then the
probability for direct viewing of the AGN from that direction is
e−N(i) and the torus covering factor is CT = 1 −

∫
e−N(i)d cos i.

If N0 is the average number of clouds along radial equatorial rays
then N (i) = N0Φ(i), where Φ(90◦) = 1. The cloud angular
distribution function Φ can be conveniently parameterized as
Gaussian, Φ(i) = e−(90−i)2/σ 2

, with σ the distribution angular
width (Elitzur et al. 2004; Nenkova et al. 2008b). Fitting of IR
observations with clumpy torus models with Gaussian angular
distributions has been reported by a number of teams, and
Figure 2 shows the results of these modeling efforts in the N0–σ
plane together with the contour plots of CT.2 As expected from
realistic unification, and first noted by Ramos Almeida et al.
(2009), type 1 and type 2 AGNs preferentially occupy different
regions in the plane. The few sources with a “wrong” covering
factor (large-CT type 1, small-CT type 2) merely reflect the
probabilistic nature of clumpy obscuration. Although this ad hoc
collection of AGNs, which were selected by different, unrelated
criteria, does not constitute a complete sample (only the Mor
et al. 2009 analysis of PG quasars involved a complete sample),
it does illustrate the point.

Since the covering factor measures the fraction of AGN
luminosity captured by the torus and converted to infrared, the
AGN IR luminosity is CTL, where L is its bolometric luminosity.
Therefore type 2 AGNs have intrinsically higher IR luminosities

2 Earlier versions of this figure were presented in Elitzur (2009; accessible at
http://www.mpe.mpg.de/events/pgn09/online_proceedings.html) and Ramos
Almeida et al. (2011). The contour plots in both of these earlier figures are
afflicted by the computer bug reported in Nenkova et al. (2010).

Figure 2. Clumpy torus covering factors. Contour plots are for a toroidal
Gaussian distribution, where the number of clouds along viewing angle i from
the axis is N0e

−(90−i)2/σ 2
, with N0 and σ free parameters. Each contour is the

locus of N0–σ combinations that produce the labeled covering factor. The data
points are from clumpy torus modeling of IR observations of AGNs reported in
Mor et al. (2009), Nikutta et al. (2009), Ramos Almeida et al. (2011), Alonso-
Herrero et al. (2011), and Deo et al. (2011).
(A color version of this figure is available in the online journal.)

than type 1. Contrary to earlier expectations of strong anisotropy
at λ ! 8 µm, Spitzer observations at this wavelength regime
show a great similarity between the IR fluxes of AGNs 1 and 2
when normalized with either their X-ray fluxes (Lutz et al. 2004;
Horst et al. 2006) or optically thin radio emission (Buchanan
et al. 2006). Part of this puzzle was solved by clumpy torus
calculations, which show much less anisotropy in IR emission
than the earlier smooth-density models (Nenkova et al. 2008b).
Realistic unification explains away the remainder.

While infrared arises from reprocessing of the AGN radiation
captured by the torus, narrow-line emission is generated by the
radiation that has escaped the torus. The narrow-line luminosity
is proportional to (1−CT)L. At the same bolometric luminosity,
type 1 AGNs can be expected to have a higher narrow-line
luminosity than type 2.

4. UNIFICATION STATISTICS

Implicitly or explicitly, all studies of AGN statistics as-
sume that type 1 and type 2 are intrinsically the same objects,
drawn randomly from the distribution of torus covering factors.

2

The Astrophysical Journal Letters, 747:L33 (3pp), 2012 March 10 Elitzur

1

2

1

2

1

2

)c()b()a(

Figure 1. AGN classification in unified schemes. (a) In a smooth-density torus, everyone located inside the cone opening, such as observer 1, will see a type 1 source;
outside a type 2. (b) Decreasing the torus covering factor, the source becomes a type 1 AGN for more observers. (c) In a clumpy, soft-edge torus, the probability for a
direct view of the AGN decreases away from the axis, but is always finite.

reflection with R = 2.2+4.5
−1.1. While this finding contradicts sim-

plistic forms of unification, it is precisely the behavior expected
from its realistic formulation: Seyfert 1 and lightly obscured
Seyfert 2 correspond to different viewing angles of intrinsically
similar AGNs, drawn from the low end of the covering factor
distribution, thus they conform, on average, to simplistic unifi-
cation. But in mildly obscured Seyfert 2 the absorber/reflector
covers a larger fraction of the X-ray source, producing stronger
reflection that is not seen in the average Seyfert 1 spectrum,
where large covering factors are rare. The large difference be-
tween the average reflection spectra of Seyfert 1 and 2 arises
from significant differences in their torus covering factors.

3. COVERING FACTORS

The sometimes loosely invoked concept of “torus covering
factor,” CT, can be rigorously defined as the fraction of the sky
at the AGN center covered by obscuring material; it is the same
as the fraction of randomly distributed observers whose view
to the center is blocked, and thus see a type 2 AGN (Nenkova
et al. 2008a). Denote by N (i) the overall number of clouds
encountered, on average, along angle i from the axis. Then the
probability for direct viewing of the AGN from that direction is
e−N(i) and the torus covering factor is CT = 1 −

∫
e−N(i)d cos i.

If N0 is the average number of clouds along radial equatorial rays
then N (i) = N0Φ(i), where Φ(90◦) = 1. The cloud angular
distribution function Φ can be conveniently parameterized as
Gaussian, Φ(i) = e−(90−i)2/σ 2

, with σ the distribution angular
width (Elitzur et al. 2004; Nenkova et al. 2008b). Fitting of IR
observations with clumpy torus models with Gaussian angular
distributions has been reported by a number of teams, and
Figure 2 shows the results of these modeling efforts in the N0–σ
plane together with the contour plots of CT.2 As expected from
realistic unification, and first noted by Ramos Almeida et al.
(2009), type 1 and type 2 AGNs preferentially occupy different
regions in the plane. The few sources with a “wrong” covering
factor (large-CT type 1, small-CT type 2) merely reflect the
probabilistic nature of clumpy obscuration. Although this ad hoc
collection of AGNs, which were selected by different, unrelated
criteria, does not constitute a complete sample (only the Mor
et al. 2009 analysis of PG quasars involved a complete sample),
it does illustrate the point.

Since the covering factor measures the fraction of AGN
luminosity captured by the torus and converted to infrared, the
AGN IR luminosity is CTL, where L is its bolometric luminosity.
Therefore type 2 AGNs have intrinsically higher IR luminosities

2 Earlier versions of this figure were presented in Elitzur (2009; accessible at
http://www.mpe.mpg.de/events/pgn09/online_proceedings.html) and Ramos
Almeida et al. (2011). The contour plots in both of these earlier figures are
afflicted by the computer bug reported in Nenkova et al. (2010).

Figure 2. Clumpy torus covering factors. Contour plots are for a toroidal
Gaussian distribution, where the number of clouds along viewing angle i from
the axis is N0e

−(90−i)2/σ 2
, with N0 and σ free parameters. Each contour is the

locus of N0–σ combinations that produce the labeled covering factor. The data
points are from clumpy torus modeling of IR observations of AGNs reported in
Mor et al. (2009), Nikutta et al. (2009), Ramos Almeida et al. (2011), Alonso-
Herrero et al. (2011), and Deo et al. (2011).
(A color version of this figure is available in the online journal.)

than type 1. Contrary to earlier expectations of strong anisotropy
at λ ! 8 µm, Spitzer observations at this wavelength regime
show a great similarity between the IR fluxes of AGNs 1 and 2
when normalized with either their X-ray fluxes (Lutz et al. 2004;
Horst et al. 2006) or optically thin radio emission (Buchanan
et al. 2006). Part of this puzzle was solved by clumpy torus
calculations, which show much less anisotropy in IR emission
than the earlier smooth-density models (Nenkova et al. 2008b).
Realistic unification explains away the remainder.

While infrared arises from reprocessing of the AGN radiation
captured by the torus, narrow-line emission is generated by the
radiation that has escaped the torus. The narrow-line luminosity
is proportional to (1−CT)L. At the same bolometric luminosity,
type 1 AGNs can be expected to have a higher narrow-line
luminosity than type 2.

4. UNIFICATION STATISTICS

Implicitly or explicitly, all studies of AGN statistics as-
sume that type 1 and type 2 are intrinsically the same objects,
drawn randomly from the distribution of torus covering factors.
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Figure 1. AGN classification in unified schemes. (a) In a smooth-density torus, everyone located inside the cone opening, such as observer 1, will see a type 1 source;
outside a type 2. (b) Decreasing the torus covering factor, the source becomes a type 1 AGN for more observers. (c) In a clumpy, soft-edge torus, the probability for a
direct view of the AGN decreases away from the axis, but is always finite.

reflection with R = 2.2+4.5
−1.1. While this finding contradicts sim-

plistic forms of unification, it is precisely the behavior expected
from its realistic formulation: Seyfert 1 and lightly obscured
Seyfert 2 correspond to different viewing angles of intrinsically
similar AGNs, drawn from the low end of the covering factor
distribution, thus they conform, on average, to simplistic unifi-
cation. But in mildly obscured Seyfert 2 the absorber/reflector
covers a larger fraction of the X-ray source, producing stronger
reflection that is not seen in the average Seyfert 1 spectrum,
where large covering factors are rare. The large difference be-
tween the average reflection spectra of Seyfert 1 and 2 arises
from significant differences in their torus covering factors.

3. COVERING FACTORS

The sometimes loosely invoked concept of “torus covering
factor,” CT, can be rigorously defined as the fraction of the sky
at the AGN center covered by obscuring material; it is the same
as the fraction of randomly distributed observers whose view
to the center is blocked, and thus see a type 2 AGN (Nenkova
et al. 2008a). Denote by N (i) the overall number of clouds
encountered, on average, along angle i from the axis. Then the
probability for direct viewing of the AGN from that direction is
e−N(i) and the torus covering factor is CT = 1 −

∫
e−N(i)d cos i.

If N0 is the average number of clouds along radial equatorial rays
then N (i) = N0Φ(i), where Φ(90◦) = 1. The cloud angular
distribution function Φ can be conveniently parameterized as
Gaussian, Φ(i) = e−(90−i)2/σ 2

, with σ the distribution angular
width (Elitzur et al. 2004; Nenkova et al. 2008b). Fitting of IR
observations with clumpy torus models with Gaussian angular
distributions has been reported by a number of teams, and
Figure 2 shows the results of these modeling efforts in the N0–σ
plane together with the contour plots of CT.2 As expected from
realistic unification, and first noted by Ramos Almeida et al.
(2009), type 1 and type 2 AGNs preferentially occupy different
regions in the plane. The few sources with a “wrong” covering
factor (large-CT type 1, small-CT type 2) merely reflect the
probabilistic nature of clumpy obscuration. Although this ad hoc
collection of AGNs, which were selected by different, unrelated
criteria, does not constitute a complete sample (only the Mor
et al. 2009 analysis of PG quasars involved a complete sample),
it does illustrate the point.

Since the covering factor measures the fraction of AGN
luminosity captured by the torus and converted to infrared, the
AGN IR luminosity is CTL, where L is its bolometric luminosity.
Therefore type 2 AGNs have intrinsically higher IR luminosities

2 Earlier versions of this figure were presented in Elitzur (2009; accessible at
http://www.mpe.mpg.de/events/pgn09/online_proceedings.html) and Ramos
Almeida et al. (2011). The contour plots in both of these earlier figures are
afflicted by the computer bug reported in Nenkova et al. (2010).

Figure 2. Clumpy torus covering factors. Contour plots are for a toroidal
Gaussian distribution, where the number of clouds along viewing angle i from
the axis is N0e

−(90−i)2/σ 2
, with N0 and σ free parameters. Each contour is the

locus of N0–σ combinations that produce the labeled covering factor. The data
points are from clumpy torus modeling of IR observations of AGNs reported in
Mor et al. (2009), Nikutta et al. (2009), Ramos Almeida et al. (2011), Alonso-
Herrero et al. (2011), and Deo et al. (2011).
(A color version of this figure is available in the online journal.)

than type 1. Contrary to earlier expectations of strong anisotropy
at λ ! 8 µm, Spitzer observations at this wavelength regime
show a great similarity between the IR fluxes of AGNs 1 and 2
when normalized with either their X-ray fluxes (Lutz et al. 2004;
Horst et al. 2006) or optically thin radio emission (Buchanan
et al. 2006). Part of this puzzle was solved by clumpy torus
calculations, which show much less anisotropy in IR emission
than the earlier smooth-density models (Nenkova et al. 2008b).
Realistic unification explains away the remainder.

While infrared arises from reprocessing of the AGN radiation
captured by the torus, narrow-line emission is generated by the
radiation that has escaped the torus. The narrow-line luminosity
is proportional to (1−CT)L. At the same bolometric luminosity,
type 1 AGNs can be expected to have a higher narrow-line
luminosity than type 2.

4. UNIFICATION STATISTICS

Implicitly or explicitly, all studies of AGN statistics as-
sume that type 1 and type 2 are intrinsically the same objects,
drawn randomly from the distribution of torus covering factors.
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LFIR	vs.	Lbol	(=SF	vs.	AGN	luminosity)
We	found	“FIR	bright	AGN”

☑	some	have	very	low	LFIR	/	Lbol	raBo

AGN	dust	emission	could	dominate	even	in	FIR	
for	those	sources	(and	SF	acBvity	could	be	very	weak)

and		below	the	expected	AGN	torus	FIR	emission

good	candidates	of	final	stage	AGN?

L70um	vs.	Lbol L90um	vs.	Lbol



LFIR	vs.	Lbol	(=SF	vs.	AGN	luminosity)
We	found	“FIR	pure	AGN”

☑	some	have	very	low	LFIR	/	Lbol	raBo

AGN	dust	emission	could	dominate	even	in	FIR	
for	those	sources	(and	SF	acBvity	could	be	very	weak)

and		below	the	expected	AGN	torus	FIR	emission

good	candidates	of	final	stage	AGN?

L70um	vs.	Lbol L90um	vs.	Lbol
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WISE	IR	color-color	selecBon	of	AGN



WISE	IR	color-color	selecBon	of	AGN

Stern+12



WISE	IR	color-color	selecBon	of	AGN

Stern+12

Mateo
s+12

☑	Our	X-ray	selected	AGN	do	not	always	locate	at	
										the	IR	selecBon	areas	of.	Stern+12,	Mateos+12

WISE	IR	color	selecBons	miss	some	AGN	populaBon
(see	also	Gandhi+16;	Kawamuro+16;	Tanimoto+16)



☑	WISE	IR	color:	insensiBve	to	low-luminosity	AGN

WISE	IR	color-color	selecBon	of	AGN



success	rate	of	WISE	color	selecBon

☑	WISE	IR	color:	insensiBve	to	low-luminosity	AGN
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☑	<20%	success	rate	for	log	Lx	<	43	(see	also	R.	Hickox’s	talk)



Summary
Swi6/BAT	(14-195	keV)	AGN	catalog	
	☑	suitable	sample	of	an	unbiased	census	of	AGN	
	☑	almost	complete	3-500	um	IR	catalog		
					(601/606	at	MIR,	402	at	FIR)

IR	and	X-ray	properBes	of	BAT	AGN	
	☑	log	L12um	∝	0.96log	L14-195keV			(slope	b=0.96)	
	☑	CT	depends	on	Lbol	=>	“receding	torus	model”	
					(FYI,	if	slope	b	is	steep,	CT	is	almost	independent	of	Lbol)	
	☑	we	found	``FIR	pure	AGN’’,	<10%	of	total	sample	
	☑	WISE	color	is	insensi've	to	low-luminosity	AGN

see	Ichikawa	et	al.	(2017)	for	more	details



Backup	slides



MoBvaBon:	Unbiased	census	of	AGN

AGNs in ULIRGs are buriedAGNs obscured by 
torus-shaped dust

Detectable via optical spectroscopy

NLR

Sy2

ⓒNASA

<10	pc

MIR	(torus)

X-ray	(corona)

☑	X-ray	and	MIR	are	good	tracers	of	(obscured)	AGN
☑	both	bands	are	isotropic	&	strong	against	absorpBon

☑	X-ray	is	more	clean	than	MIR	(=AGN+	possible	SB)

(Stern+12,	Mateos+12,	KI+14,15)

unified	model:	Rees	84;	Antonucci	&	Miller	85;	Urry	&	Padovani	95

torus	size:	Burtscher+13;	Garcia-Burillo+16



EquaBons	of	LMIR	vs	Lx

☑	X-ray	saturates	at	high-L/high-λEdd	end



Covering	factor	(CT)	vs.	Lbol
Lx	=>	Lbol		(Marconi+04)	and	LMIR/Lbol	=>	CT	(Stalevski+16)

☑	CT	decreases	as	Lbol	increases	(KI+17,	Mateos+15,	Asmus+15)

☑	However,	high-z/-L	AGN	(e.g.,	Stern’15)	do	not	follow	the	trend

consistent	with	“luminosity	dependent	unified	model”

lower	slope	b	is	necessary	to	reproduce	receding	torus	model



Eddington	raBo	of	BAT	AGN/SDSS	QSOs

☑	Most	sources	are	at	log	λEdd	<	-2.0	for	BAT	AGN

Winter+09 Shen+11BAT	AGN
SDSS	QSO

☑	Most	sources	are	at	log	λEdd	>	-2.0	for	SDSS	QSOs



SaturaBon	of	Lx	at	high-L	end

☑	X-ray	saturates	at	high-L/high-λEdd	end

Stern	‘15

Marconi+04



WISE	IR	color	study

Stern+12,	Assef+13,	see	also	Stern’s	talk	at	“Hidden	Monster	2016”



WISE	IR	color	vs	X-ray	selected	AGN

☑	WISE	IR	color:	insensiBve	to	low-luminosity	AGN
☑	<20%	success	rate	for	log	Lx	<	43

Ichikawa+17


