

HSC

J. Greene, R. Bezanson, J. Greco, S. Johnson, E. Medezinski, A. Leauthaud, Y. Matsuoka, M. Strauss & the HSC Survey Collaboration

goulding@astro.princeton.edu

Andy D. Goulding — Princeton University

FORMATION OF STRUCTURE & THE SUPPRESSION OF STAR-FORMATION

OF MERGERS IN AGN/GALAXY (

e.g., Cisternas et al. 2011; Schawinski et al. 2011; Triester et al. 2012; Kocevski et al. 2012; Villforth et al. 2014; Fan et al. 2014; Rosario et al. 2015 etc.

At higher AGN luminosities, are mergers the key?

e.g., Cisternas et al. 2011; Schawinski et al. 2011; Triester et al. 2012; Kocevski et al. 2012; Villforth et al. 2014; Fan et al. 2014; Rosario et al. 2015 etc.

SDSS: GALAXY/MERGER AGN DEMOGRAPHICS IN THE PRESENT DAY

SDSS: GALAXY/MERGER AGN DEMOGRAPHICS IN THE PRESENT DAY

SDSS: GALAXY/MERGER AGN DEMOGRAPHICS IN THE PRESENT DAY

 large sample with high-quality imaging
 a time averaged picture of AGN accretion

Nearby:

large sample with high-quality imaging - a time averaged picture of AGN accretion

Nearby:

 large sample with high-quality imaging
 a time averaged picture of AGN accretion

Nearby:

Require deep, high-quality wide-format imaging

large volume
high luminosities
observe (possible)
evolution

 large sample with high-quality imaging
 a time averaged picture of AGN accretion

Nearby:

HSC

large volume
high luminosities
observe (possible)
evolution

EXTENDING MORPHOLOGIES TO Z~I IN WIDE-FIELD OPTICAL SURVEYS

GALAXY ZOO.org

Histarstryder Home The Science How to Take Part Galaxy Analysis Forum Press Blog FAQ Links Contact Us

Galaxy Tutorial

Galaxy Analysis

Galaxy Zoo - Thank You

Show My Galaxies

Galaxy Analysis

Welcome to Galaxy Zoo's view of the Universe. If you're here you should already have seen the Tutorial, but feel free to go and remind yourself. There's no need to agonise for too long over any one image, just make your best guess in each case.

Galaxy Ref: 587729387677679742

Choose the Galaxy Profile by clicking the buttons below

EXTENDING MORPHOLOGIES TO Z~I IN WIDE-FIELD OPTICAL SURVEYS

Hyper Suprime-Cam Survey

HSC

SUBARU & THE PRIME-FOCUS INSTRUMENT

Subaru Telescope: wide field of view & excellent image quality

What makes for a good cosmological survey? Fast, Wide, Deep & Sharp

UPGRADE: HYPER SUPRIME-CAMERA

- world's largest camera
- 3m high
- weigh 3 ton
- 116 CCDs
- ~0.9B pixels

SUBARU & THE PRIME-FOCUS INSTRUMENT

Subaru Telescope: wide field of view & excellent image quality

What makes for a good cosmological survey? Fast, Wide, Deep & Sharp

SUBARU & THE P'

Subaru Telescope:

What makes for a ge cosmological survey?

• Fast, Wide, Deep & Sharp

HSC : FOV ~I.8 deg²

M3

BIG DATA PROBLEMS: AUTOMATED MORPHOLOGIES IN HSC

Validation of 2D morphologies using GALFIT analysis of HST and HSC galaxies in COSMOS & AEGIS

- i<22 mags in HSC-WIDE
- All spec-z selected
- ~140,000 galaxies in first ~170deg²

redshift_{limit} ~< |</p>

AUTOMATED INTERACTION-STAGE CLASSIFICATIONS

ഹ

4

Concentration

Residual Flux **Fluctuations**

see Conselice '03; Lavery+'04; Lotz+'04; Cassata+'05; Conselice+'08; Jogee+'08,'09; Lotz+'08; Wen+'09; Hoyos+'12

PLANTING (DECISION-)TREES & GROWING (RANDOM-)FORESTS

MERGING GALAXIES HOST THE MOST RAPIDLY GROWING BHS

MERGING GALAXIES HOST THE MOST RAPIDLY GROWING BHS

MERG

(c) Interaction/"Merger"

- now within one halo, galaxies interact & lose angular momentum
- SFR starts to increase
- stellar winds dominate feedback
- rarely excite QSOs (only special orbits)

(b) "Small Group"

- halo accretes similar-mass companion(s)
- can occur over a wide mass range
- Mhalo still similar to before: dynamical friction merges the subhalos efficiently
- (a) Isolated Disk

- halo & disk grow, most stars formed
- secular growth builds bars & pseudobulges
- "Seyfert" fueling (AGN with Me>-23)
- cannot redden to the red sequence

(d) Coalescence/(U)LIRG

- galaxies coalesce: violent relaxation in core
- gas inflows to center:
- starburst & buried (X-ray) AGN
- starburst dominates luminosity/feedback, but, total stellar mass formed is small

(e) "Blowout"

- BH grows rapidly: briefly dominates luminosity/feedback
- remaining dust/gas expelled - get reddened (but not Type II) QSO: recent/ongoing SF in host
 - high Eddington ratios merger signatures still visible

(f) Quasar

2

6<z<0.9

- dust removed: now a "traditional" QSO - host morphology difficult to observe:
- tidal features fade rapidly - characteristically blue/young spheroid

(g) Decay/K+A

- QSO luminosity fades rapidly - tidal features visible only with very deep observations
- remnant reddens rapidly (E+A/K+A)
- "hot halo" from feedback
 - sets up quasi-static cooling

- star formation terminated
- large BH/spheroid efficient feedback
- halo grows to "large group" scales: mergers become inefficient
- growth by "dry" mergers

11

