The AGN as a Protostar

Moshe Elitzur

UC Berkeley & Univ. of Kentucky

Unified Scheme for AGN

Single Cloud Distribution

$$R_{d} = 0.4 L_{45}^{1/2} pc$$

r < R_d – dust free clouds: Broad Line Region

r > R_d – dusty clouds: Toroidal Obscuration Region

AGN gravitational sphere

$$R_{BH} = 35 pc (M_{\bullet 7} / \Omega_1^2)^{1/3}$$

BLR and Torus Structure: Environment of Accreting Point Mass

Prime Example: Star Formation

From Doug Lin

Relevant physical parameters

Planetary systems:

- 1. Mass ratio: $10^{-6} 10^{-3}$
- 2. Period: days-centuries
- 3. Radius/semi major axis: 10⁻⁴

Protostellar disks

- 1. Disk mass/star mass: 0.01-0.1
- 2. H/r = 0.05 0.2
- 3. Q > 10
- 4. Persistent time scale: 3-10My

Galactic center system:

- 1. Mass ratio: $10^{-6} 10^{-3}$
- 2. Period: yrs- millenium
- 3. Radius/semi major axis: 10⁻⁴

AGN and young stellar disk

- 1. Disk mass/star mass: ~0.01
- 2. H/r ~ 0.01-0.1
- 3. Q: ~1
- 4. Persistent time scale: 1-100My

BLR and Torus Structure: Environment of Accreting Point Mass

Prime Example: Star Formation

Grand Unification Theory

Warm Absorber

Circinus Water Masers

Water Masers in NGC 3079

Kondratko, Greenhill & Moran '05

High-latitude features — disk rotational imprint: uplifted clouds

NGC 1068 – radio continuum & H₂O masers

Gallimore+ 04

ALMA Spectra of NGC 1068 Nucleus

Gallimore+ 2017

NGC 1068 Nucleus

NGC 1068 p-v Diagram

NGC 1068 p-v Diagram

NGC 1068 CO ALMA Observations

- Biploar molecular outflow
- Signature of rotation

First clear evidence for a disk outflow

Low Luminosity = Low Accretion

- Torus disappears
 - Obscuration (Chiaberge+ 99, Maoz+ 05, Hernandez-Garcia+ 16)
 - Thermal dust emission (Wysong+04, Trump+11, Gonzalez-Martin+17)
- Broad Lines disappear (true type 2)

Fundamental Constraint

 Obscuration, broad line emission require minimal column, N_{min}

•
$$N_R = \int n(R) dR > N_{min}$$

Disk-outflow mass continuity:

$$L > L_{min} = \Lambda M_7^{2/3}$$

$$\Lambda = 3.3 \times 10^{45} (\epsilon r l)^{4/3} erg s^{-1}$$

BLR/TOR must disappear at some low L!

Elitzur & Shlosman '06

Broad Line Emission Constraint

 $L > L_{min} = \Lambda M_7^{2/3} \qquad \Lambda = 3.3 \times 10^{45} (\epsilon r l)^{4/3} \text{ erg s}^{-1}$ $5 \times 10^{39} \text{ erg s}^{-1} < \sim \Lambda < \sim 4 \times 10^{44} \text{ erg s}^{-1}$

Elitzur & Netzer '15

Broad Line Disappearance

BL Emission & True Type 2

BL Emission & True Type 2

Torus Emission & Luminosity

BLR Low-Luminosity Evolution

- Spectral type $1 \rightarrow 1.2/1.5 \rightarrow 1.8/1.9 \rightarrow 2$ is an evolutionary sequence (Elitzur, Ho & Trump '14):
 - Evolution governed by L/M^{2/3}
 - Broad line "covering factor" (L_{BL}/L_{bol}) decreases
 - Double-peaked profiles emerge

Clouds

Force on a cloud = Wind ram pressure – Gravity

Kartje+ '99 Elitzur+ '14

A mix of "wind" + "disk" populations

A Two-Component BLR

- "wind" : $N_{H,C} < N_w (R_d/r)^{\frac{1}{2}}$
- "disk": $N_{H,C} > N_w (R_d/r)^{\frac{1}{2}}$

- As L decreases, $N_w (\propto L/M^{2/3})$ decreases
- More clouds become supercritical "wind" → "disk", but not the other way!
- Less central luminosity is intercepted
- Double-peaked profiles emerge
- r-dependence line-specific behavior

Summary

- Support for the AGN—Protostar analogy
- Protostellar structure AGN default mental picture
- AGN disk evolution is simpler no nuclear ignition
- BLR (and TOR) disappearance inherent to disk winds
 - Independent of wind properties (just mass conservation!)
 - All AGN with L <~ $5x10^{39}$ M₇^{2/3} erg s⁻¹ are true type 2
 - True type 2 at any Eddington ratio & L as high as ~4x10⁴⁶ erg s⁻¹
 - Evolution controlled by L/L_{min} ($\propto L/M^{2/3}$)