

Finding Elusive AGN in the (mid)-Infrared Almudena Alonso Herrero

Recent evidence for missing AGN in X-ray (<10keV) surveys

A non-negligible fraction of luminous, heavily obscured (high covering factors) type-2 AGN X-ray detection (at energies < 10keV) are missing:

• NuSTAR Serendipitous Survey

Claudio Ricci's talk

• Comparison of optical fraction of type 1/type 2 of X-ray selected AGN with the modelled distribution of torus geometrical covering factors

Thermal IR continuum emission of radio quiet AGN

Infrared lines in AGN

Tommasin+2010

Spinoglio & Malkan 1992 ☆[SiVI] AGN lines **Coronal Regions** [SiIX] [SiWI]☆ CaIV][MgIV] è Photodissociation Regions [SiVII] 🏠 [MgVIII] [FeII] [CaV] ☆ [MgV] [FeII] [SiIX] $(cm^{-3})_{10^{6}}$ [OI] ArVI [ArII] MgV Sill ArVl NeVI critical density <-NeIII [ArV NeV] [OI] AGNs [SIII] [OIV] [SIII] [NIII] NeV [CII] Stellar/HII Regions 000 ▲[OIII] ▲ [NII] 8 ▲ [NII] 10 100 ionization potential (eV)

Brightest AGN lines in the mid-IR spectral range:

- [NeV] at 14.3µm and 24µm (91.7eV)
- [OIV] at 25.9µm (54.9eV)

The X-ray vs. mid-IR correlations

Asmus+2011,2015, see also Gandhi+2009, Levenson+2009, Mason+2012 and many more

García-Bernete+2017

Kohei Ichikawa's talk

The [OIV] line at 25.89µm:AGN and/or SF indicator

See also Melendez+2008, Diamond-Stanic & Rieke 2009

Rigby+2009

This line could be used potentially to estimate the AGN power in very obscured and Compton-thick AGN and ULIRGs

Pereira-Santaella+2010

This line can also be excited by SF activity. However, SF excitation important when SF is about x20 more luminous than the AGN

Dave Alexander's talk

AGN fraction in nearby galaxies using the [NeV]14.3µm line

Nearby galaxies: AGN fraction ~27%(+8/-6%) -50% of these are not identified in the optical -Strong SF activity and/or moderate extinction (a few Av)

LINERs [NeV] detection rate ~40%, many without other sings of AGN activity

Bulge-less nearby galaxies AGN incidence in Sd/Sdm drops significantly. No an Av effect but due to lack of AGN

Goulding & Alexander 2009, see also Satyapal+2008, Dudik+2009

High excitation lines to identify AGN in (U)LIRGs

Local LIRGs: 50-70% with [OIV] detections and 22% with [NeV] detections

Local ULIRGs: 25-50% with [OIV] detections and 25-50% with [NeV] at 14.3 μm

Farrah+2009, see also Armus+2006, 2007, Veilleux+2009

Alonso-Herrero+2012 and also Petric+2011

Spectral/SED decomposition methods to identify AGN

Local ULIRGs:

Alonso-Herrero+2012

Nardini+2008,2009,2010

Elusive AGN in local (U)LIRGs

IR indicators provide the fraction of buried (non-Seyfert) AGN in local (U)LIRGs that are not identified by X-rays and/or optical spectroscopy

Local **LIRGs:** Fraction of elusive (=non-Seyfert) AGN is 20-25% Local **ULIRGs:** Fraction of elusive (=non-Seyfert) AGN is 50-70%

IR indicators: Imanishi+2010,2011, Alonso-Herrero+2012 X-rays: Maiolino+2003

IR power law emission as a method to select AGN

In cosmological fields with deep IRAC observations

Detection in all 4 IRAC bands with a power law continuum $f_v \sim v^{\alpha}$ in (U)LIRGs and spectral indices $\alpha < -0.5$ over 3.6-8µm

Needs good estimates of photometric errors

Alonso-Herrero+2006, and see also Donley+2007, 2008

IR color selection of AGN using IRAC data

Can be contaminated by star forming galaxies in very deep IRAC exposures

Lacy+2004, Stern+2005 and figures from also Donley+2008

IR power-law AGN selection using IRAC colors

This is a more restrictive wedge which takes into account:

- typical uncertainties photometric uncertainties
- avoids contamination by high z SF galaxies in deep IRAC observations

IR power-law AGN selection using WISE colors

Mateos+2012, 2013 and see also Jarret+2012, Stern+2012, Assef+2013 for other WISE selections

Selecting AGN/QSO from AllWISE catalog

Sample of 1,354,775 AGN selected from AllWISE using Mateos+2012 criteria of which 1.1 million of these were previously uncataloged

Probability of correctly identifying a known AGN/ QSO is at least 84% for AGNs brighter than a limiting magnitude of R <19 $\,$

WISE+SDSS AGN: Secrest+2015, see also Mateos+2013 for detection of SDSS [OIII] selected type 2 QSO

Optical follow-up of WISE selected QSO

Strong dependence on depth of X-ray data

IRAC selection: Mendez+2013, see also Alonso-Herrero+2006, Donley+2007,2008,2012 WISE selection: Mateos+2012, see also Assef+2013

Completeness of IR power-law AGN selection

Host galaxy dilution

IRAC/WISE selections most likely to miss X-ray and optically selected AGNs:

- luminous hosts (ie, massive host galaxies)
- AGN emission is itself obscured.

Donley+2012 for IRAC selection

See also e.g., Lazy+2007, Alonso-Herrero+2008, Hickox+2009, Mendez+2013, Messias+2014, Azadi+2017

Do mid-IR criteria select obscured Iuminous AGN?

Rovilos+2014

See also Landsbury+2014 for optical CT QSO2 candidates

Hardness ratios of IRAC selected AGN

HR =0.31 \pm 0.13, column densities of log NH(cm⁻²) =23.5 \pm 0.4.

HR = -0.31 ± 0.13 , column densities of log NH(cm⁻²) = 22.4 ± 0.4

COSMOS cosmological field with Chandra data

Donley+2012, see also Alonso-Herrero+2006

Looking for IR power law emission using SED decomposition

GOODS-South and Chandra 4Ms X-ray catalog:

- At z<1.5 3/4 of the X-ray AGN are identified with this method
- At z>1.5 only 44% of X-ray AGN are identified
- ~50% of the selected galaxies at I<z<I.5 are not identified in X-rays

Caputi+2013, see also e.g., Daddi+2007

Chris Carroll's talk

JWST photometric filters

NIRISS Filters

Credit: JWST webpage at STScI

MIRI Filters

Deep surveys with JWST to select AGN

Combination of NIRCam F200W and F444W and MIRI F770W and F1800W to select AGN at z~1-2.5

Fabio Panucci's talk: detection of DCBH

JWST/NIRSpec Multi-Object Spectroscopy

NIRSpec/MOS provides multiplexing 0.6–5.3 μ m spectroscopy capabilities over a 3.6' × 3.4' field of view using configurable shutters

Credit: JWST webpage at STScl

JWST/NIRISS slitless spectroscopy

The wide field slitless spectroscopy mode of NIRISS enables low-resolution (R \approx 150) spectroscopy over the wavelength range 0.8–2.2µm for all objects within a 2.2' × 2.2' field of view.

Simulated images of a lensing cluster observed with the NIRISS F115W filter and the GR150C grism and F115W blocking filter

Credit: JWST webpage at STScl 26

JWST sensitivity and angular resolution

Credit: Frontier Fields webpage and G. Snyder & Z. Levay (STScI)

Spatially-resolved AGN selection with JWST

JWST Integral Field Units

MIRI/MRS FoV

Channel	Band	Nr. slices	Wavelength Range [μm]	Spectral Resolution	FoV [arcsec]
1	1A	21	4.88 - 5.77	~3500	3.46 x 3.72
	1B		5.64 - 6.67		3.46 x 3.72
	1C		6.50 - 7.70		3.41 x 3.72
	2A		7.47 - 8.83	_	4.16 x 4.76
2	2B	17	8.63 - 10.19	~3000	4.16 x 4.76
	2C		9.96 - 11.77		4.12 x 4.76
3	3A	16	11.49 - 13.55	~2600	6.00 x 6.24
	3B		13.28 - 15.66		5.96 x 6.24
	3C		15.34 - 18.09		5.91 x 6.24
4	4A	12	17.60 - 21.00	~1600	7.14 x 7.87
	4B		20.51 - 24.48		7.06 x 7.87
	4C		23.92 - 28.55		6.99 x 7.87

Credit: JWST webpage at STScI

MIRI

Conclusions

IR offers a large number of tools to identify elusive AGN: emission lines, line ratios, color-color selection, SED/spectra decomposition

MIR diagnostics do not provide a complete selection of AGN but:

- High excitation lines can identify faint/buried AGN in local galaxies
- Color-color selections are highly reliable to identify luminous AGN (Lx>10^{43.5}erg/s) and possibly Compton-thick AGN
- WISE color-color selections provide large catalogs of QSO

JWST provides ALL these IR diagnostics with much higher sensitivity and angular resolution using all observing modes:

- Imaging with NIRCam, NIRISS, MIRI
- MOS with NIRSpec
- Slit-less spectroscopy with NIRISS
- IFU with NIRSpec and MIRI

