Searching for (feedback in) obscured and reddened quasars at the peak of galaxy formation

Rachael Alexandroff

PhD Candidate Johns Hopkins University (soon to be CITA/Dunlap!)

Elusive AGN George Mason University June 14, 2017

Image credit: David A. Hardy (UK ATC)

Special Thanks To:

Nadia Zakamska (JHU), Fred Hamann (UCR), Jenny Greene (Princeton), Michael Strauss (Princeton), Nic Ross (Univ. Edinburgh), Niel Brandt (Penn State), ...

Outline

1. How do we identify "elusive" AGN at high redshift?

- How can we use multiwavelength studies to probe quasar winds (feedback) at
 - a) small and
 - b) large scales?

1. How do we identify "elusive" AGN in the early universe?

Why is the "early universe" so important?

• If we want to understand the bulk of BH growth we need to be at $1 \le z \le 3$

Obscured Quasar Candidates

- selected using optical (SDSS-III) BOSS spectroscopy
- ~150 candidate obscured quasars from SDSS III, 2 < z < 4
 - "traditional" narrow emission lines (FWHM < 2000 km/s)

Obscured Quasar Candidates

Extremely Red Quasars

- 95 quasars selected using a combination of MIR (WISE) & optical (SDSS-III)
 - i-w3 > 4.6 (AB mag)
 - picks out heavily dustenshrouded objects reradiating in the MIR
 - we noticed something strange....

Ross et al. 2015 Hamann et al. 2017

Extremely Red Quasars

- 95 quasars selected using a combination of MIR (WISE) & optical (SDSS-III)
 - REW CIV > 100 Å
 - Hypothesis-
 - suppressing quasar continuum but not emission line region? Dusty outflow with patchy obscuration?

Ross et al. 2015 Hamann et al. 2017

Ross et al. 2015 Hamann et al. 2017

Introducing: Extremely Red Quasars

- 95 quasars selected using a combination of MIR (WISE) & optical (SDSS-III)
 - REW CIV > 100 Å
 - Hypothesis-
 - suppressing quasar continuum but not emission line region? Dusty outflow with patchy obscuration?

Why study "elusive" AGN?

- These powerful sources may be the sites of quasar feedback:
 - a) creation of BH-bulge correlations

b) regulate size of massive galaxies

Silk & Mamon, 2012

2. What evidence do we see for outflows launched by the quasar on small scales?

Image credit: Wada et al. 2016

Spectropolarimetry can reveal scattering geometry & kinematics

- quasar light may be scattered in to our line of sight from dust or free electrons
- the light becomes linearly polarized in the process
- traditional obscured quasars have optical polarization of a few %

Observed 5 obscured & extremely red quasars using LRISp on Keck

Observed 5 obscured & extremely red quasars using LRISp on Keck

- Main observational signatures:
 - high levels of continuum polarization (>15% in 3 objects)
 - lower levels of polarization in emission lines than the continuum
 - rotation of the polarization
 position angle as a function of wavelength in the emission lines

- Most of the observed continuum must be scattered light
- scattering efficiency a few percent

- Main observational signatures:
 - high levels of continuum polarization (>15% in 3 objects)
 - lower levels of polarization in emission lines than the continuum
 - rotation of the polarization position angle as a function o wavelength in the emission lines

- Most of the observed continuum must be scattered light
- scattering efficiency a few percent

Hamann et al. 2017

- Main observational signatures:
 - high levels of continuum polarization (>15% in 3 objects)
 - lower levels of polarization in emission lines than the continuum
 - rotation of the polarization position angle as a function of wavelength in the emission lines

- Scattering region ~ scale of the emission line region (~10 pc)
- lots of dust on these scales (obscured objects!) and therefore dust scattering, more efficient than e⁻ scattering, dominates

- Main observational signatures:
 - of continuum
 - high levels of continuum polarization (>15% in 3 objects)
 - lower levels of polarization in emission lines than the continuum
 - rotation of the polarization position angle as a function of wavelength in the emission lines

• Need different structures to produce polarized emission at different velocities

• Physically-motivated "slim disk" model

- Physically-motivated "slim disk" model
- Naturally reproduces polarization position angle variation as a function of emission line velocity
- Implies these quasars are driving outflows near the central engine

emitting outflow

Alexandroff et al. 2017 (*being submitted*) Zakamska & Alexandroff 2017 (in prep)

- Physically-motivated "slim disk" model
- Naturally reproduces polarization position angle variation as a function of emission line velocity
- Implies these quasars are driving outflows near the central engine

Alexandroff et al. 2017 (*being submitted*) Zakamska & Alexandroff 2017 (in prep) 2. What evidence do we see for outflows launched by the quasar effecting the host galaxy on large scales?

Tracing ionized outflows using [OIII] gas

- Ionized outflows can be traced by forbidden emission line [OIII]
- Without IFU observations (pending), rely on kinematics

"Type 2" objects show hints of blueshifted emission

Greene, Alexandroff et al. 2014

Tracing ionized outflows using [OIII] gas

- Ionized outflows can be traced by forbidden emission line [OIII]
- Without IFU observations (pending), rely on kinematics

most extreme ERQs show [OIII] FWHM > 3000 km/s

this is to large to be contained by any reasonable galaxy potential

Origin of Radio Emission in Radio-Quiet Quasars

- z < 0.8 observed correlation between line width & radio luminosity
- Could the quasar-driven shocks also accelerate particles and produce the observed radio emission?
- How to differentiate from young/weak radio jets?

Zakamska & Greene 2014

Origin of Radio Emission in Radio-Quiet Quasars

2. What evidence do we see for outflows effecting the molecular material on galaxy scales?

Tracing molecular outflows using CO(1-0)

- Tracing molecular gas is the only way to ascertain if the quasar is removing star-forming material from its host galaxy
- Look for molecular gas by tracing CO emission with VLA (ALMA in future)

Tracing molecular outflows using CO(1-0)

- Non-detection of CO (1-0) in a stack of 11 quasars observed for a total of 14 hours with the VLA in 2016
 - CO line luminosity < 2.4 x 10⁹ K km/s pc²
 - implies gas mass < 9.6-1.9 x $10^9 \, M_{\,\odot}$ (depending on α_{CO})
- Evidence that quasars have little low excitation gas compared to SMGs?
- Evidence that powerful quasar is clearing its host galaxy of molecular gas?

Conclusions

 A combination of optical & MIR selection reveals "elusive" quasars at high redshift that may shed some light on important open questions

2. ERQs especially display tantalizing evidence of quasar feedback

 Multi-wavelength observations and new techniques allow us to probe gas at small & large scales, in various ionization states

